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Abstract: The objective of almost all controller tuning rules found in the literature,
going back to the classic PID rules of Ziegler an Nichols (1942), is to get the
“fastest” possible closed-loop response, subject to maintaining stability with
reasonable robustness margins. This gives a maximum limit on the controller
gain. In practice, however, we often want control to be as smooth and “slow”
as possible, subject to satisfying some minimum performance requirements. This
gives a minimum limit on the controller gain, and the goal of this paper is to derive
this minimum limit, when the performance requirements is to achieve a specified
level of disturbance rejection. Together with the more traditional tunings rules
this results in a range for the acceptable controller gain.
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1. INTRODUCTION

The objective of almost all PID tuning rules found
in the literature, e.g., (Ziegler and Nichols, 1942)
(Cohen and Coon, 1953) (Astrom and Hagglund,
1995), (Rivera et al., 1986), is to get the “fastest”
possible closed-loop response, subject to main-
taining stability with reasonable robustness mar-
gins. The model-based direct synthesis approaches
of Rivera et al. (1986) and Smith and Corripio
(1985) contain the closed-loop time constant 7. as
a tuning parameter, but also in these works the
emphasis is to obtain a lower bound on 7. (fast
response). To obtain stability and robustness, the
value of 7, is limited by the effective time delay
0 of the process, and typically a value 7. = 6 is
selected (Skogestad, 2003). For processes with a
small effective delay this may lead to an unneces-
sary fast response, and a larger value of 7. (slower
response) should be used. However, the response
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cannot be too slow, because otherwise we do not
achieve acceptable performance. In this paper we
assume that the main performance specification is
that the disturbance effect on the output should
be bounded.

In summary, the goal of this paper is the to de-
rive conditions for the “slowest possible” response
(upper bound on closed-loop time constant 7;
lower bound on controller gain K_.), subject to
achieving acceptable disturbance rejection. There
has been work along these lines in the literature on
controllability analysis and decentralized control
(Hovd and Skogestad, 1992) (Hovd and Skoges-
tad, 1994) (Skogestad and Postlethwaite, 1996),
but the implications of these results on controller
tuning have not been considered.
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Fig. 1. Block diagram of feedback control system.

2. DERIVATION OF LOWER LIMIT ON
CONTROLLER GAIN

The linear transfer function model in deviation
variables is written (Figure 1)

y = g(s)u + ga(s)d (1)

where wu is the manipulated input (controller out-
put), d the disturbance, y the controlled output,
g(s) the process transfer function, and g4(s) the
disturbance transfer function model. The Laplace
variable s is often omitted to simplify notation.

With feedback control we have u = ¢(s)(ys — v),
where ¢(s) is the feedback controller and we in
the following do not consider setpoint changes,
i.e. ys = 0. The effect of the disturbance d on
the control output y under closed-loop control is
then

y = %d = S(s)ga(s) -d 2)

where S = 1/(1 4+ L) is the sensitivity function
and L(s) = g(s)c(s) is the loop gain.

We consider the following performance require-
ment:

e The (steady-state) output variation y in (2)
should be less than |ymaz| in response to any
sinusoidal disturbance of magnitude |dp]|.

For simplicity we assume that the values of |ymqz|
and |dp| are constant, independent of frequency.
From (2) the performance requirement |y(jw)| <
Ymaz then gives

1S(jw)! - 19a(jw)| - |do] < [Ymae|
or equivalently

|9a(jw)] - |do

|ymaz|

1+ L(jw)| 2 = [Ga(jw)| (3)

where we have introduced the scaled disturbance
gain

d
Gddéfgd' | 0| (4)

|ymaz|

The requirement (3) is illustrated in Figure 2.

We define the bandwidth wp as the frequency
where |S| = 1/|1 + L] first crosses 1 from below,
and wy as the highest frequency where |G| crosses
1, i.e. |G4(jwq)| = 1. From (3) and Figure 2 we
must require wg > wy, that is, wy provides a lower
limit on the closed-loop bandwidth for acceptable
disturbance rejection.
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Fig. 2. Performance requirement |1 + L| > |G4|
(3) is satisfied at all frequencies.
—0.25s
Data: gg = g = 4%, |Ymaz| = 1,|do| = 1, PI-

control with K, = 4.313 and 77 = 0.82.

At low frequencies w < wp [rad/s], within the
closed-loop bandwidth, we have |L| > 1 and (3)
gives |L| > |Gy4|, which gives the following lower
limit on the frequency-dependent controller gain
for acceptable disturbance rejection

. |9a(jw)| - |do|
c(jw)| > ————; w<w 5
1GN 2 19T Tmae] z O
which may be rewritten as
) = ULy cwn ()

- )
|yma:c |

where |ug(jw)| def % is the magnitude of

the input change needed to reject the disturbances
at frequencies where |L| > 1. This interpretation
follows since at low frequencies y ~ 0 and from
(1) the required input to reject the disturbance is
uo = —(94/9)do. From (6) we derive the following
useful rule at lower frequencies where control is
effective:

e The minimum controller gain at a given
frequency is approximately equal to input
change required for disturbance rejection di-
vided by the allowed output variation.

As expected, tight control (with |ymez| small)
requires a large controller gain |c|, as does a large
disturbances (with |ug| large).



2.1 Load disturbance

For the special (and very common) case of an
input (load) disturbance (g4 = ¢) the required
input change equals the disturbance magnitude,
|ug| = |dol|, and the bound (5) becomes

|do

Load disturbance : |c(jw)| >

)
|ymaw|

where |dy| is the magnitude of the input (load)
disturbance. This bound is illustrated in Figure 3
for a PI- and PID-controller.

10°

10" f

10"

10°

107 10~ 10 10 10°
Frequency

Fig. 3. Controller gain |c| as a function of fre-
quency for PI- and PID-controller.
Data Pl-controller: K, = 4.31,7;7 = 0.82; PID-
controller: K. = 4.31, 71 = 0.82,7p = 0.20.

Both for a PI-controller and for a PID-controller 2

1
CPID5(8) =K. (1 + — + TDS) (8)
TIS

the minimum value of the controller gain |c(jw)|
as a function of frequency is always equal to K,
(independent of the values of 7; and 7p) (see also
Figure 3):

min |cprp(jw)| = K.

For a well-tuned PI- and PID-controller, wpg is
about at the frequency where the controller gain
reaches it minimum, and from (7) we then get
the following bound in order to achieve acceptable
disturbance rejection with PI- and PID-control:

|do

Load disturbance :
|ymaw |

K. > (9)

For PID tuning rules that are parameterized in
terms of a single tuning parameter, like IMC-
PID(Rivera et al., 1986) or SIMC-PID(Skogestad,

2 In this paper we consider the “ideal” PID controller in
(8) and the ZN-settings are assumed to be given for this
form.

y w< wB(7)

2003), we can from the value of K. obtain the tun-
ing parameter (e.g. 7.) and from this obtain the
remaining controller parameters (77 and 7p). For
example, the SIMC PI-tunings(Skogestad, 2003)
for a first-order delay process

p 1
R (10)
are
1 1
p= 11
k 1.+86 (11)
77 = min (71, 4(7. + 6)) (12)

and with a given value of K., we can obtain 7,
from (11) and then obtain 7 from (12).

3. PI-LEXAMPLE

Consider a first-order with delay process with time
constant 71 = 6 and time delay 6 = 0.25:

6_0'253

6s+1

g(s) =4 (13)

The performance requirement is that the output
deviation should stay within +|ymez] = 1 in
response to a step input (load) disturbance of
magnitude |do| = 1, which from (9) requires K, >
|do|/|ymaz| = 1 (for a sinusoidal disturbance). It is
also desirable that control is as smooth as possible,
which means that we want K. as small as possible.

Tuning for fast response. The “closed-loop”
Ziegler-Nichols (ZN) settings for this process are

K, =4313, 7, = 0.82 (14)

We note that K. is 4.3 times the minimum re-
quired value, so we expect that the output re-
sponse is much better than the requirement. This
is confirmed both by the frequency plot in Fig-
ure 2, as well as the time response to a unit
step input disturbance in Figure 4. The output
deviation in Figure 4 is less than 0.2, well below
|Ymaz| = 1. However, because of the high con-
troller gain, the input usage and also the output
response is sensitive to measurement noise n on y
(dashed line in Figure 4).

Tuning for smooth response. The above re-
sponse is unnecessary fast so the controller gain
may be reduced. We choose K. = |do|/|ymaz| = 1.
With k=471 =6,6 = 2.5 we get from (11) that
K. =1 corresponds to 7, = 1.25, and from (12)
we obtain the following SIMC-settings:

K.=1, m7=6 (15)
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Fig. 4. Response to step load disturbance with
“fast” ZN-PI controller (14).
Dashed line: With measurement noise. Solid
line: No noise

The corresponding disturbance response in Fig-
ure 5 has a maximum output deviation of about
0.7, which is below |ymqez| = 1, and input usage
is smooth with no sensitivity to noise. Thus, this
tuning is preferred in practice.

Remark: We may reduce K. further below 1 and
still achieve an output deviation less than vy,,4, =
1. The reason why (9) is not tight in this case,
is mainly that the expression is derived for a
sinusoidal disturbance whereas we here consider
a step disturbance.
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Fig. 5. Response to step load disturbance with
“smooth” SIMC PI controller (15).
Dashed line: With measurement noise. Solid
line: No noise

4. DISCUSSION
4.1 Averaging level control

A well-known case where a low controller gain is
desired is for “averaging level control” where we
use a tank in order to smoothen flow disturbances.
Here the main control objective is to have smooth

input usage (smooth flow variations), subject to
the requirement of stabilizing the system and
keeping the level within bounds when there are
flow disturbances. In (9), |dp| is the magnitude
of the flowrate change (|Ag|) and |ymqz| is the
allowable level change (|Ahmeg|)- From (9) the
minimum controller gain for averaging level con-
trol is

|Aq|

K, > =4
- |Ahmaz|

(16)

which agrees with the value normally recom-
mended (e.g. (Marlin, 2000)). The process transfer
function g(s) from u (flowrate ¢) to y (level h) is
close to integrating (with 7 in (10) very large)
and can be written

_ kl —0s

9(s) = e

where k' = k /7y is the slope of the response. From
the SIMC-rule for the controller gain in (11) we
get 7. + 6 = 1/(K k'), which upon substitution
into (12) gives the integral time

4

~ KR an

TI

which agrees with the industrially recommended
value in Fruehauf et al. (1994).

4.2 Controllability implications

An approximate maximum value of the controller
gain is achieved by selecting the desired closed-
loop response time 7, in (11) equal to zero. This
gives the “maximum” controller gain
1 T1 1
Kc,mam = E ? = m (18)
If the “maximum” controller gain in (18) is
smaller than the “minimum” controller gain com-
puted above, then the process is not controllable
— at least not with PID control with reasonably
robust tunings. In words, the speed of response
required for disturbance rejection is faster than
what can be achieved with the given time delay.
For example, for a load disturbance the minimum
controller gain K. ,,.;, is given by (9), and requir-
ing K¢ maz > K¢ min for controllability gives an
upper bound on the allowed delay

|yma:c| 71
o< do| &
The right hand side represents the minimum re-
sponse time, and we note, as expected, that a
small response time is required if we have a tight
performance requirement (|Ymqe| small), a large
disturbance (|dp| large), or a “fast-acting” distur-
bance (k' = k/m large).




4.8 Generalization to multivariable systems

The results in this paper can be directly gen-
eralized to decentralized control of multivariable
systems by introducing the closed-loop distur-
bance gain (Hovd and Skogestad, 1992) (Hovd
and Skogestad, 1994) (Skogestad and Postleth-
waite, 1996).

5. CONCLUSION

The requirement of acceptable disturbance rejec-
tion (output deviation less than |y,q.| in response
to a sinusoidal disturbance of magnitude |dg|),
results in a lower limit (5) on the controller gain.
In words, the minimum controller gain at a given
frequency is approximately equal to input change
required for disturbance rejection divided by the
allowed output variation. For a load disturbance
and PI or PID control this requirement becomes

Kc Z |d0|/|ymaz| (9)
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