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Abstract: Modelbased Predictive Control (MPC) is a control technique that is
widely used in chemical process industry. In the past decade, stability of MPC has
been an intensive research area, resulting in the general acceptance of a theoretical
MPC stability framework introducing a terminal cost and terminal constraint to
the classic MPC formulation. Although guaranteeing stability, issues regarding
optimality and feasibility remain. In this paper, an LMI-based constrained MPC
scheme for linear systems is introduced which guarantees stability by use of a
time-varying terminal cost and terminal constraint. The online calculation of
the terminal cost results in improved performance and feasibility compared to
MPC schemes with fixed terminal cost. Finally, the technique is illustrated on a

copolymerization reactor.
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1. INTRODUCTION

In the past decade, wide consensus has been
reached with respect to achieving stability of MPC
controllers (Mayne et al. (2000)). The common
denominator of stabilizing MPC schemes has been
recognized to be the addition of a terminal cost
and terminal constraint to the classic MPC for-
mulation. It has also been recognized, however,
that the choice of these two additions influences
feasibility and local optimality of the resulting
controller.

In this paper a new MPC scheme with time-
varying terminal cost and constraint will be intro-
duced which results in a controller that is locally
optimal while conserving feasibility over a wide

range of states. The approach taken here is to use
a special case of the LMI formulations introduced
in Kothare et al. (1996) and later used in Lee et al.
(1998) to ensure stability for linear, time-varying
systems. It is then shown that these LMI’s can be
merged with the classic MPC optimization prob-
lem, which results in an LMI-based MPC scheme
that calculates in each time step both the optimal
inputs and an optimal, stabilizing terminal cost
and constraint.

This paper is organized as follows. In a first part a
general introduction to linear MPC will be given,
after which, more specifically, the established sta-
bility theory of MPC will be discussed. The third
part explains how a stabilizing terminal cost and
terminal constraint can be calculated using LMI’s



and how these stabilizing ingredients influence
optimality. In a fifth part, the MPC scheme with
time-varying terminal cost will be introduced,
which is then illustrated on a copolymerization
reactor in the final section.

2. MODELBASED PREDICTIVE CONTROL

Modelbased Predictive Control (MPC) is a con-
trol scheme that calculates in each time step an
optimal future input sequence ug;, i =0... P —1
by solving an optimization problem. In this paper
only linear MPC (i.e. using linear models) will be
discussed, in which case the problem reduces to a
Quadratic Program (QP) :
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Zp = Zp,o denotes the states measured at time
k. zp;,i > 0 denote the states at time &k + ¢
as predicted at time k, xy ;4 > 0 denote the
future states at time k + ¢ as desired at time
k and wug;,7 > 0 denotes the input sequence
as calculated at time k. @@ and R are positive
definite weighting matrices indicating the relative
importance of the states and inputs in the control
problem. M and P denote respectively the num-
ber of future inputs and states that are calculated
in each time step and are called the control horizon
and the input horizon. M and P are generally
given equal values, which is what will be assumed
in this paper. Equality constraints (1b) represent
the system behavior, with given system matrices
A and B.

From the calculated input sequence only the first
input up = ug, is applied to the system, after
which the calculation restarts in the next time
step with a new measured state zjy1.

Typically additional linear inequality constraints
are incorporated in the QP, representing either
physical system limitations, safety margins or eco-
nomical constraints. Depending on the variables
involved these are called input constraints or state
constraints and will be denoted by u;y € U and
zy, € X respectively.

3. STABILITY THEORY

Although MPC calculates in each time step an
optimal input sequence, there is no guarantee
that the controller is stable. In each time step

only the first input of the calculated sequence is
applied to the system and there is no guarantee
that this sequence of first inputs is optimal in
any way. The fundamental cause of this problem
is the fact that the horizon P is finite, and the
behavior of the system for ¢ > P is not taken
into account in the optimization problem. Several
MPC variants were developed to address this issue
(Mayne et al. (2000); Rawlings and Muske (1993);
Lee et al. (1998)). Most of these methods fit into
the following stability framework.

Assuming 7 ; = 0 (or a previous transformation
accomplishing this), a stabilizing MPC controller
can be obtained by modifying the weight matrix
of the terminal state z,p into @ p (called the ter-
minal cost), the total control cost of a locally sta-
bilizing feedback controller k(z) = Kz for i > P,
and adding a terminal state constraint z; p € Xp
(also called terminal constraint) corresponding to
the region in which the terminal cost is valid. More
formally, asymptotic stability is achieved when
following conditions are satisfied :

a. XpCX (2a)
b. kn(z) e U,Vz e Xp (2b)
c. f(z,k(x)) € Xp,Vz € Xp (2¢)
d. F(z) - F(f(z, k() — (2, k(z)) >0,

Vz e Xp (2d)

given there exists a feasible solution to (1) supple-
mented with the terminal constraint and terminal
cost. f(z,u) = Az + Bu denotes the system state
transition function, /(z,u) denotes the cost func-
tion zTQz + uTRu for all 4 = 1,2,...,P —1 and
F(z) the cost term 2T Q pz for the terminal state.

Note that these conditions are sufficient but not
necessary. Most stabilizing MPC schemes make
different choices for Xp and K to satisfy these
conditions. When they are satisfied J7 = min Ji
can be proven to be monotonically descending to
0, so it can be used as a Lyapunov function to
prove asymptotic stability.

In the unconstrained case (no input or state
constraints), the above conditions can be easily
satisfied by choosing Xp = R and K = Kjq,. The
solution S to the corresponding Riccatti equation
(Kalman (1960)) can then be used as terminal cost
(Bitmead et al. (1990)).

4. DETERMINING TERMINAL COST USING
LMTI’S

The forementioned method to calculate a terminal
cost cannot be used in the constrained case, in
which case the constraints have to be accounted
for explicitly. As proposed in Boyd et al. (1994)
and Kothare et al. (1996), a linear, stabilizing
feedback controller, which is optimal in an LQR
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Fig. 1. Total control cost (full line) of recovering from an initial disturbance zo for a typical system,
in function of Z and for different disturbance sizes. Different regions of operation are delimited by

dashed lines. It is clear that performance is very

dependent on the choice of Z. A compromise has

to be made between feasibility (larger Z) and optimality (smaller Z).

sense and which respects input and state con-
straints, can be found by solving a linear opti-
mization problem with LMI constraints :

Jmin (32)
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after which the feedback matrix and terminal cost
can be calculated as

K=YZ" (4a)
Qr=7Z"". (4b)

T is an arbitrary state, representing typical exci-
tations, to be chosen by the user.

Remark 1. The resulting linear feedback con-
troller minimizes Z' @ pZ, representing the total
control cost of the controller to achieve equilib-
rium from initial condition Z, while respecting
input and state constraints

|[u]l| Sui,max t=1...ny4

|CJx| S Yj,max ] =1.. . MNge

for all initial states x satisfying

lzllor < lIZller (5)

with n, denoting the number of inputs and ng
denoting the number of state constraints.

Remark 2. For sufficiently small values of Z,
where input and state constraints are not active,
the resulting K and @Qp can be shown to be
identical to those obtained by calculating an LQR
controller with the help of Riccatti equations. In
this case, the terminal cost exactly represents the
remaining control cost beyond the horizon which
leads to a locally optimal controller.

Remark 3. For sufficiently large values of Z, it will
not be possible to find a stabilizing linear feedback
controller which still respects the input and state
constraints. In this case optimization problem (3)
won’t have a feasible solution.

Remark 4. (5) can be shown to satisfy conditions
(2a), (2b) and (2¢) for Xp, so it can be used
as terminal constraint. A more thorough proof is
given in Pluymers et al. (2003). This constraint
is not linear but quadratic, which can complicate
the optimization problem. Two arguments can be
given however to relativate this. First of all, the
constraint can be approximated by a set of linear



constraints, which again reduces the problem to
a QP. Secondly, because of the fact that Qp is a
positive definite matrix, the terminal constraint is
elliptic, thus convex, so the use of efficient convex
optimization algorithms is still possible.

5. OPTIMALITY

In the previous section an approach is explained to
calculate a stabilizing terminal cost and terminal
constraint for linear MPC with input and state
constraints using LMI’s. One aspect that has not
been clarified, however, is the choice of Z. It is
clear that, on the one hand, Z should be chosen
small enough to make sure (3) has a feasible
solution, while, on the other hand, Z should still
be chosen large enough to make sure (5) isn’t
overrestrictive which can result in an infeasible
MPC optimization problem.

Apart from feasibility, which is a necessary condi-
tion for stability, another important feature which
is influenced by the choice of Z is the performance
of the controller. This is shown in figure 1. It can
be observed that feasibility (large Z) and optimal-
ity (small Z) cannot be achieved simultaneously
for all ||zg]|. One should thus choose the smallest
Z that still results in a feasible MPC controller for
all disturbances that can be expected.

It is clear that the use of a time-varying terminal
cost and terminal constraint could result in im-
proved performance, while preservering feasibility
of the controller. A technique accomplishing ex-
actly this is proposed in the next section.

6. MPC WITH TIME-VARYING TERMINAL
COST

As shown in the previous section, significant
performance improvements can potentially be
achieved by adaptively choosing T depending on
the current state of the system. The strategy cho-
sen in this paper, is to incorporate the choice of Z
directly into the MPC optimization problem
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wherei =0,... P—1 and @ p(Z) explicitly denotes
the dependence of the terminal cost and terminal

constraint on Z. This way in each time step % is
chosen to minimize Jg.

The above optimization problem cannot be im-
plemented as such, due to the fact that evaluat-
ing Qp(Z) in turn requires the solution of (3),
which is not efficient. The approach taken here is
to convert the above optimization problem into
LMTI’s, after which these can be merged with (3),
resulting in a unified (and convex) optimization
problem.

Before doing this, another simplification can be
made. It can be rigourously proven that in the
optimum, the equality Q(Z) = Q(zk,p) holds. In
this way Z can be eliminated from the optimiza-
tion problem by replacing Qp(Z) with Qp(zk,p).
Consequently, the terminal constraint can be re-
moved because it is trivially satisfied. The validity
of this elimination is proven in Pluymers et al.
(2003).

To convert the MPC optimization problem into
an LMI problem, we first eliminate the equality
constraints, because these cannot be efficiently
converted to LMI’s. After elimination, the MPC
problem can be written as

P \
min u Kquaau + kiinu+

(Cpu+ Dp)'Qp(Cpu+ Dp)(Cpu+ Dp) (Ta)

subject to

Ainequ < Bineq (7b)
where Cpu+ Dp is an expression for the terminal
state zx,p, s0 @p(Cpu+ Dp) again expresses the
dependency of @ p on this state. This QP, without
equality constraints, can be converted to a linear
optimization problem with LMI constraints

min v, + 72 (8a)
U172
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— . T
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u quad
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>0 8
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It can be easily seen that ; represents the
cost of states and input up to i = P — 1,

while 2 represents the cost of the terminal state
zp,p Qp(xk,p) Tk p. Because of the equivalence
of Qp(zk,p) and Qp(Z) this is exactly the same
expression as the objective function of (3) as men-
tioned in remark 1. This is illustrated by the fact
that the objective function of (3) is represented by
(3a), which can be made equivalent with (8¢) by
applying (4b). The dependence of @ p on xy p can
thus be explicitly incorporated into (8) by adding
constraints (3b)-(3g). This results in the following
optimization problem :

min v+ (9a)
uy'Yli'YZaZ’Y,X
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and (3c¢)-(3g).

As will be shown in the next section, this MPC
scheme with time-varying terminal cost achieves
better performance than the traditional MPC
scheme with fixed terminal cost and terminal con-
straint, while preserving feasibility of the con-
troller. The optimization problem is converted
from a QP into a linear problem with LMI con-
traints. This is still a convex optimization prob-
lem, for which efficient algorithms exist. The
disadvantage, however, is the increased number
of optimization variables, which causes a signifi-
cantly higher computational complexity. A more
detailed analysis of the computational complexity
and a way to largely eliminate this disadvantage
is given in Pluymers et al. (2003).

7. EXAMPLE

To illustrate the concepts introduced in the pre-
vious sections, control of a continuously stirred
copolymerization reactor is considered. The model
used in this paper has already been discussed
in Congalidis et al. (1989, 1986). Although the
model is stable at the operating point used in this
paper, the introduction of an terminal cost and
the adaptive, online calculation hereof results in
improved performance.

The reactor consists of a continuously stirred tank
to which the reagents are fed with a feed rate
chosen by the controller. The reaction product
(polymers), solvent and residual reagents are si-
multaneously drained from the tank, after which
the first is separated from the latter. From an
engineering point of view, the most important
measured variables are the reactor temperature
Ty (K), the polymer production rate, Gp(kg/h),
the mass fraction Y, of monomer A in the poly-
mer and the average molar mass My(g/mole) of
the polymer. See table 1 for an overview of inputs
and outputs and their steady state values.

The differential equations of the nonlinear reac-
tor model as derived in Congalidis et al. (1989)
were implemented in MATLAB. The model was
discretized in time (75 = 300s)by using a MATLAB
differential equation solver and linearized around
the operating point described in the same ref-
erence. Resulting in a linear state-space model
with 6 inputs and 15 states, among which the
4 forementioned variables. This model was then

input s.s.-value
monomer A feed rate (Gyr) 18.00 kg/h
monomer B feed rate (Gpg) 89.99 kg/h
initiator feed rate (Gir) 0.18 kg/h
solvent feed rate (Gsf) 36.02 kg/h
chain transfer agent feed rate (Gyf) 2.70 kg/h
inhibitor mass feed rate (G¢) 0.0003 kg/h
output s.s.-value
polymer production rate (Gp) 23.31 kg/h
monom. A mass fract. in polym. (Yap) 0.56

polymer molar mass (Mp)
reactor temperature (T;)

35003.48 g/mole
353.00 K

Table 1. Overview of the input and
output variables of the reactor model
and their steady state values.

normalized with respect to the steady state values
(xn = (T — xss)/Tss and up, = (U — ugg)/Uss)
to avoid numerical problems. All states were as-
sumed to be measured.

To compare the performance of the different MPC
schemes discussed in this paper, the recovery of
the system from an initial disturbance in the reac-
tor temperature was investigated. More specificly,
initial disturbances of the reactor temperature of
respectively 1%, 2%, 3% and 4% were applied and
the behaviour of the system was observed.

The following observations can be made. As shown
in table 2, standard MPC is feasible for all distur-
bances, but has a worse control cost, compared to
some of the controllers with fixed terminal cost.
The controllers with fixed terminal cost, however,
impose a trade-off between local optimality and
feasibility. This is overcome by the controller with
time-varying terminal cost which is feasible for all
disturbances and has superior control cost. The
different input and output trajectories for the 3%
disturbance can be observed in fig. 2.

8. CONCLUSION

In this paper a linear LMI-based MPC scheme
using a time-varying terminal cost was intro-
duced and asymptotic stability was proven. Exist-
ing LMI-formulations for calculating a stabilizing
terminal cost were combined with the classical
MPC formulation to obtain a single optimization
problem, leading to this scheme. The advantages
are improved feasibility and conservation of local
optimality, which are illustrated using a model of
a continuously stirred copolymerization reactor.

The disadvantage of the proposed scheme is the
increase in computational complexity. A further
analysis and a new scheme with time-varying ter-
minal cost with reduced computational complex-
ity is discused in Pluymers et al. (2003), as well as
a generalization towards nonlinear systems, using
linear, time-varying models.



b\a / 0.01  0.02 0.03 0.04 time-varying T
0.01 5.46 | 4.83 4.83 5.57 6.71 4.83
0.02 | 21.84 / 19.32  22.29 26.86 19.31
0.03 | 49.15 / / 50.16 60.43 43.78
0.04 | 87.37 / / / 107.32 79.97

Table 2. Control cost of MPC without terminal cost (column 1), MPC with fixed

terminal cost (column 2 to 5) for different Z (with T}, = a) and MPC with time-

varying terminal cost (column 6) for different initial disturbances x¢ (with T, = b)

on the copolymerization reactor model. A slash (/) means the controller resulted

in an infeasible optimization problem. The parameters used were = I, except

Q(7’7) = Q(13,13) = Q(14’14) = Q(15’15) = 10, R =1 and P = 3. Component—wise
bounds [—1, 1] were applied to the (normalized) inputs and states.
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Fig. 2. Input(left) and output sequences (right) for the simulations with MPC without terminal cost
(solid), MPC with fixed terminal cost (dashed) and MPC with time-varying terminal cost (dotted)
for an initial disturbance of 3% in the reactor temperature. The same parameters as in table 2 were
used. The method with time-varying terminal cost clearly performs better than the other methods.
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