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Abstract: This paper proposes an incremental approach for the identification
of complex reaction kinetics in chemical reactors. The reaction fluxes for the
various species are first estimated on the basis of concentration measurements
and balance equations. This task represents an ill-posed inverse problem requiring
appropriate regularization. In a further step, the reaction rates are estimated
without postulating a kinetic structure. Finally, the dependency of the reaction
rates on concentrations, i.e. the kinetic laws, are constructed by means of feed-
forward neural networks. This incremental approach is shown to be both efficient
and flexible for utilizing the available process knowledge. The methodology is
illustrated on the industrially-relevant acetoacetylation of pyrrole with diketene.
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1. INTRODUCTION

The description of reaction kinetics often repre-
sents the most challenging part in the model-
ing of chemical reactors. A reliable description is
rarely available a priori. For example, it is well
known that reaction kinetics cannot necessarily be
derived from stoichiometries (Connors, 1990), in
particular in the case of catalyzed reactions. Thus,
a reliable kinetic model needs to be identified from
experimental data.

The model-based techniques used in process con-
trol and optimization require a model that ade-
quately describes the process dynamics, i.e. also
the kinetics in reaction systems. For the case
where a kinetic structure is not available, Psi-
chogios and Ungar (1992) proposed a hybrid ap-
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proach to process modeling as an alternative to
recurrent neural networks for describing the dy-
namic system. The hybrid model combines prior
knowledge on mass and energy balances with a
feed-forward neural net model that serves as a
substitute for the constitutive equations that can-
not be determined from first principles. These
authors found that the hybrid model has bet-
ter properties than standard black-box neural
net models, i.e. interpolation and extrapolation
are more accurate and the model is easier to
analyze and interpret. Parameters in the neural
net part of the hybrid model can be estimated
from experimental data. Recently, Tholudur and
Ramirez (1999) used a two-step approach for the
identification of kinetics: Reaction rates are first
identified, assuming known curve characteristics,
and subsequently correlated with the independent
state variables using a feed-forward neural net
approximation. Van Lith et al. (2002) combined



an extended Kalman filter for the estimation of
states and rates with subsequent fuzzy submodel
identification.

In this work, an incremental approach for the
identification of reaction kinetics is proposed when
no prior kinetic knowledge is available. The ap-
proach is applicable to all reactor types, i.e. also to
those exhibiting transient behavior and possibly
variable feed and effluent streams. The reaction
fluxes for the various species are estimated from
noisy concentration data using the approach of
Mhamdi and Marquardt (1999). Then, the in-
dividual reaction rates can be calculated using
knowledge of reaction stoichiometry. These reac-
tion rates and the concentration data serve as
input to a Bayesian algorithm to train a feed-
forward neural network yielding the kinetic model.
The approach is especially suited for nowaday’s
high resolution measurement techniques such as
IR (Alsmeyer et al., 2002) or Raman spectroscopy
(Bardow et al., 2003), where concentration data
can be obtained continuously in-situ.

2. PRELIMINARIES

2.1 Model of the reaction system

Consider a homogeneous, not necessarily isother-
mal, chemical reaction system with R reactions
involving S species. The time evolution of the
number of moles of species i, ni [mol], is given by:

dni

dt
= f in

i − fout
i + f r

i , i = 1, .., S (1)

where f in
i and fout

i [mol/min] are the molar flow
rates of species i into and out of the reactor and
f r

i [mol/min] is the reaction flux of species i, i.e.
the net molar flow rate of species i produced or
consumed by the various chemical reactions.

The reaction flux of species i can be expressed in
terms of the individual reaction rates:

f r
i = V

R∑
j

νijrj , i = 1, .., S (2)

where νij is the stoichiometric coefficient for
species i in the jth reaction, rj [mol/l min] the
rate of the jth reaction, and V [l] the volume.

In vector form, equation (2) reads:

f r = V Nr (3)

where f r is the S-dimensional reaction flux vector,
r the R-dimensional reaction rate vector and N

the S × R stoichiometric matrix.

Equation (3) indicates that, if S ≥ R, the reaction
rate vector can be calculated from the reaction
fluxes as follows:

r =
1

V
N+f r (4)

where N+ is the Moore-Penrose inverse of N.

For a constant-density semi-batch reactor with a
volumetric feed of rate F [l/min] and concentra-
tion cin

i [mol/l] and no outflow, the mole balance
equation (1) expressed in terms of the molar con-
centration ci = ni/V [mol/l], and the total mass
balance give

dci

dt
=

F

V
(cin

i − ci) +
f r

i

V
(5)

dV

dt
= F, (6)

implying no volume change by the reactions.

2.2 Estimation of reaction fluxes

The reaction fluxes f r
i (t) can be estimated inde-

pendently for each species. A generic model of the
problem is developed as follows. Let

yi(t) = ni(t) − ni(t0) −

∫ t

t0

ui(τ) dτ, (7)

where ui(τ) = f in
i (τ) − fout

i (τ). This transforma-
tion, applied to (1), leads to

dyi(t)

dt
= f r

i (t), yi(t0) = 0, (8)

where f r
i (t) is considered as an unknown input

that must be determined on the basis of a noisy
measurement

ỹi(t) = yi(t) + εyi
(t). (9)

Here, the superscript (̃·) is used to denote a noisy
quantity and εy represents the measurement noise
contained in ỹ.

This estimation problem represents an ill-posed
inverse problem according to the definition of
Hadamard (Engl et al., 1996). Since the measure-

ment is noisy, the estimate f̂ r
i (t) of f r

i (t) can be
arbitrarily large if no regularization of the solu-
tion is considered. Mhamdi and Marquardt (1999)
used Tikhonov-Arsenin filtering for the estimation
of f r

i (t). The quality of the estimation is greatly
influenced by the choice of the regularization pa-
rameter that weighs the tradeoff between noise
reduction and bias in the estimate. Adequate reg-
ularization parameters can be determined by the
L-curve criterion (Hansen, 1998), for example.

Another approach to filtering is the use of smooth-
ing splines (Craven and Wahba, 1979). Splines
are piecewise polynomial functions that possess
certain smoothness and differentiability properties
at the nodes. General cross validation (GCV) is
often used to select a suitable regularization pa-
rameter (Craven and Wahba, 1979).



3. INCREMENTAL IDENTIFICATION
APPROACH

The incremental identification approach mirrors
the steps taken when developing a model for a
given process. During model development, the bal-
ance equations are set up first and the unknown
fluxes are then described by constitutive equa-
tions. If needed, variable parameters in the con-
stitutive equations can be modeled as functions of
the system states. Transferring this procedure to
the identification process, the incremental identi-
fication approach features the stepwise identifica-
tion of quantities as they are used in the modeling
process. In an adaptive model identification con-
text (Marquardt, 2002), the incremental approach
allows the utilization of as much information as
can be safely provided by first-principle modeling
or sound empirical approaches. The process of
identification then reduces to modeling uncertain-
ties, i.e. unknown parameters in a given structure
or the model structure itself. This way, the iden-
tification procedure is split up into a sequence of
decoupled identification problems. This offers two
main advantages: i) the solution at a given step
becomes more simple as e.g. process dynamics are
considered in the first step and can be omitted
subsequently, and ii) physical insight is provided
for tackling the following steps.

The incremental identification approach for the
identification of reaction kinetics is depicted in
Figure 1. It includes the following steps:

(1) The fluxes f̂ r
i (t), i=1, .., S are estimated using

mole balances (Model 1). Use equations (7)-
(9) and ñi = c̃iV .

(2) With additional information on stoichiom-
etry (Model 2), the reaction rates r̂j(t),
j=1, .., R are then calculated using (4).

(3) Furthermore, if the rate laws (e.g. r =
kcAcB) are known (Model 3), (time-variant)

rate constants k̂j(t) are calculated from the
reaction rate r̂j(t) and concentrations ĉi(t).

(4) Model 4 in addition assumes a temperature
dependency of k such as the Arrhenius law

(k = k0e
−E

RT ). The rate constant parameters

(k̂0j , Êj) can then be estimated from k̂j(t)

and T̂ (t).

If parts of the kinetics are unknown, such as the
Arrhenius law, the outputs of Model 3 can be
taken as inputs to a data-driven approach for
describing k = k(T ). For an unknown rate law
(Model 2 known), ĉi, T and r̂j serve as inputs
to the data-driven models rj = rj(ci) and rj =
rj(ci, T ) for the isothermal and non-isothermal
cases, respectively. If the reaction stoichiometry
is unknown, target factor analysis (Bonvin and
Rippin, 1990) can help identify the stoichiometry
based on the estimated fluxes.
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Fig. 1. Incremental approach for reaction kinetics
identification

For describing functional relations in a data set,
methods can be grouped in two categories based
on the quality and amount of prior knowledge.
If a model structure is available, the unknown
model parameters can be identified from the data.
Lacking such a model structure, black-box ap-
proaches are usually used, with the choice of basis
functions based on some prior knowledge. Their
ability to approximate any function arbitrarily
well, given a sufficient number of parameters,
may imply overfitting where the error on the
training set is small, but a large error results if
new data are presented to the model. To avoid
overfitting and improve the predictive capability
of the model, regularization, model discrimina-
tion or data validation techniques are commonly
used. Feed-forward neural networks with Bayesian
regularization (MacKay, 1992) may serve as an
automated regularization procedure for training.

4. ILLUSTRATIVE EXAMPLE

4.1 Simulated reaction system

The incremental approach for identifying reaction
kinetics is illustrated on the acetoacetylation of
pyrrole with diketene (Ruppen et al., 1997):

P+D
K
→ PAA (10a)

D+D
K
→ DHA (10b)

D → oligomers (10c)

PAA+D
K
→ F (10d)

In addition to the desired reaction of diketene (D)
and pyrrole (P) to 2-acetoacetyl pyrrole (PAA)
(10a), there are several undesired side reactions
(10b)-(10d). These include the dimerization and
oligomerization of diketene to dehydroacetic acid
(DHA) and oligomers as well as a consecutive
reaction to the by-product F. The reactions take
place isothermally in a laboratory-scale semi-
batch reactor with an initial volume of 1 liter,
to which a diluted solution of diketene is added
continuously.



Reactions (10a), (10b) and (10d) are catalyzed by
pyridine (K), the concentration of which continu-
ously decreases during the run due to addition of
the diluted diketene feed. The dilution of catalyst
is modeled by normalizing the corresponding rate
constants with respect to the volume. Reaction
(10c), which is assumed to be promoted by other
intermediate products, is not normalized. Hence,
the effective reaction rates are described by the
following constitutive equations

rj(t) =
V0

V (t)
r?
j (t), j = {a, b, d}, (11)

rc(t) = r?
c (t), (12)

with the formal reaction rates

r?
a(t) = kacP(t)cD(t), (13a)

r?
b (t) = kbc

2
D(t), (13b)

r?
c (t) = kccD(t), (13c)

r?
d(t) = kdcPAA(t)cD(t), (13d)

where ka, kb, kc and kd represent the rate con-
stants and V0 the initial volume.

The mole balances for the species D, P, PAA and
DHA read

dcD(t)

dt
=

F (t)

V (t)
[cin

D − cD(t)] +
f r
D(t)

V (t)
, (14a)

dcP(t)

dt
= −

F (t)

V (t)
cP(t) +

f r
P(t)

V (t)
, (14b)

dcPAA(t)

dt
= −

F (t)

V (t)
cPAA(t) +

f r
PAA(t)

V (t)
, (14c)

dcDHA(t)

dt
= −

F (t)

V (t)
cDHA(t) +

f r
DHA(t)

V (t)
, (14d)

with the initial conditions cD(0) = cD0, cP(0) =
cP0, cPAA(0) = cPAA0 and cDHA(0) = cDHA0. The
reaction fluxes f r

D, f r
P, f r

PAA and f r
DHA can be re-

lated to the reaction rates using the stoichiometry:

f r
D = (−ra − 2rb − rc − rd)V, (15a)

f r
P = −raV, (15b)

f r
PAA = (ra − rd)V, (15c)

f r
DHA = rbV. (15d)

4.2 Experimental design

To assess the capability of the incremental iden-
tification approach and allow a comparison of the
modeled and true kinetics, concentration trajecto-
ries are generated using the model described above
and the rate constants given in Table 1.

The measured concentrations are assumed to stem
from a high-resolution in-situ measurement tech-
nique such as Raman spectroscopy, taken at a

Table 1. Values of rate constants

ka kb kc kd

[ l

molmin
] [ l

molmin
] [ 1

min
] [ l

molmin
]

value 0.053 0.128 0.028 0.001

Table 2. Range of independent variables

cD0 cP0 cPAA0 cDHA0 F cin

D

[ mol

l
] [ mol

l
] [ mol

l
] [ mol

l
] [ l

min
] [ mol

l
]

min 0.07 0.40 0.10 0.02 0.5e-3 4.0

max 0.14 0.80 0.20 0.04 1.5e-3 6.0

sampling frequency fs = 60 min−1 and corrupted
with normally distributed white noise of standard
deviation σc = 0.01 mol/l. The batch time is
tf = 60 min. Concentration data are available for
the species D, P, PAA and DHA, but not for the
oligomers and the side product F since the latter
are difficult to obtain.

The reaction system (10a)-(10d) suggests that rb

and rc are univariate functions of cD, whereas ra

and rd are expected to be bivariate functions of
cP, cD and cPAA, cD, respectively.

To obtain reliable approximations of the reaction
rates, in particular for the bivariate functions,
experiments are designed so as to obtain concen-
tration data over a large domain. Six indepen-
dent variables can be considered: the four initial
conditions cD0, cP0, cPAA0 and cDHA0, feed rate
F chosen to be constant during a run, and feed
concentration cin

D . The possible ranges of these
independent variables are given in Table 2. Since
cD0, cP0, F and cin

D have the largest impact on
the resulting transient behavior, a 26−2 factorial
design consisting of 16 experiments is selected.
Fewer experimental runs would reduce the valid-
ity range and/or the predictive capability of the
model, while additional runs would improve them.

4.3 Various modeling scenarios

In the following, three different modeling scenarios
are presented, each differing in the amount of prior
knowledge regarding the reactions. The fluxes,
reaction rates and reaction kinetics are identified
from noisy concentration measurements.

Scenario 1 In the first scenario, we assume
knowledge regarding the existence of reactions
(10a)-(10d), including their stoichiometric coeffi-
cients. Moreover, it is known that the rates of the
reactions (10a), (10b) and (10d) are proportional
to the catalyst concentration, see (11).

The reaction fluxes for the various species are ob-
tained from (8) using appropriate regularization.
Here, smoothing splines with GCV are used for
determining the regularization parameters.

From the time-dependent reaction fluxes f r
i , i =

{D,P,PAA,DHA}, the time-dependent reaction



rates rj , j = {a, b, c, d}, can be calculated using
(15a)-(15d). Since the influence of the catalyst on
the reaction rates is known, the formal reaction
rates r?

j are determined from (11) and (12).

Finally, the concentrations and the reaction rates
from one or several runs are correlated as r?

a =
r?
a(cP, cD), r?

b = r?
b (cD), r?

c = r?
c (cD) and r?

d =
r?
d(cPAA, cD), as proposed by stoichiometry. A

feed-forward neural net with Bayesian regular-
ization as training algorithm and 3 nodes in the
hidden layer is utilized.

Scenario 2 In the second scenario, no informa-
tion regarding the effect of catalyst on the kinetics
is postulated. This corresponds to r?

j = rj . Other-
wise, the procedure is identical to that of Scenario
1.

Scenario 3 We consider the case where little is
known a priori about the reaction system. Besides
the known desired reaction (10a), there is evidence
that diketene (D) and pyrrole (P) are involved
in other reactions, including the formation of the
dimerization product DHA. Hence, the stoichio-
metric model

P+D → PAA (16a)

D + ν1PAA → ν2DHA + G (16b)

is postulated, where the possible side reactions
are lumped into reaction (16b) with the unknown
stoichiometric coefficients ν1 and ν2 and some
unknown side products G.

From the estimated reaction fluxes, the reaction
rates r?

a(t) for Reaction (16a) and r?
lump(t) for

Reaction (16b) as well as the stoichiometric co-
efficients ν1 and ν2 can be determined as solution
of the reconciliation problem:

f r
D(t) = [−r?

a(t) − r?
lump(t)]V (t) (17a)

f r
P(t) = −r?

a(t)V (t) (17b)

f r
PAA(t) = [r?

a(t) − ν1r
?
lump(t)]V (t) (17c)

f r
DHA(t) = ν2r

?
lump(t)V (t). (17d)

The rates r?
a(t) and r?

lump(t) can subsequently be
correlated with the concentrations, as discussed in
Scenario 1.

4.4 Identification results

Reaction fluxes and concentrations Exemplarily,
the true and estimated reaction fluxes for species
D are shown in Figure 2 (right). Integration of
(14a) yields an estimate of the concentration cD,
as shown in Figure 2 (left).

Reaction rates For Scenario 1, the estimated rate
r?
b in the univariate case is shown in Figure 3,

along with training data and true rate.
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Kinetic model The validity range of a model is
defined as the smallest n-dimensional (e.g. n = 2
for the bivariate case) box containing all concen-
tration combinations taken for training. The mean
and maximum values of the neural net predictions
in the validity range are compared to the true
(simulated) reaction rates in Table 3.

The predictions obtained in Scenarios 2 and 3 are
comparable which can be accredited to the fact
that the volume change remains small during the
runs (the increase in volume does not exceed 3%
for the low and 9% for the high feed rate). Pre-
sumably, the importance of the catalyst dilution
becomes more obvious for large volume changes.
Rate r?

d, whose value is small compared to the
other rates, is mainly influenced by noise and
cannot be identified satisfactorily.

For the lumped model in Scenario 3, the main
reaction rate r?

a is identified with reasonable accu-
racy despite the error introduced by lumping all
side reactions in (16b). Here, the stoichiometric
coefficients ν1 and ν2 were calculated as 0.0028
and 0.2227, respectively. Since the rates r?

b , r?
c and

r?
d were not modeled, they are not identified in this

case.

Table 3. Reaction rate prediction errors

r
?
a r

?

b
r

?
c r

?

d

Scenario 1 Mean error 2.95 6.15 5.16 185

Max. error 11.24 26.42 20.92 3245

Scenario 2 Mean error 4.48 7.33 4.88 117

Max. error 15.69 25.84 18.58 466

Scenario 3 Mean error 4.64 - - -
Max. error 62.99 - - -



4.5 Validation of the hybrid model

To check the predictive capability of the hybrid
model consisting of the mole balance equations
and the neural-net-based kinetic laws, concentra-
tion trajectories are simulated using (13a)-(13d)
and the neural net approximations used to predict
them. Ten runs were simulated with experimen-
tal conditions chosen randomly within the ranges
given in Table 2. The mean and maximum values
of the prediction errors are listed in Table 4.

Table 4. Hybrid model prediction errors

[%] cD cP cPAA cDHA

Scenario 1 Mean error 0.81 0.11 0.40 1.10

Max. error 2.80 0.63 1.48 5.58

Scenario 2 Mean error 0.79 0.24 0.61 1.10

Max. error 2.30 0.43 1.19 5.04

Scenario 3 Mean error 0.60 0.20 0.53 4.13

Max. error 1.91 0.42 1.28 15.58

Hybrid model predictions show excellent agree-
ment with the true (simulated) values. The fact
that the model predictions are good even for a
poorly estimated reaction rate r?

d illustrates the
difficulties experienced in estimating this rate.
These results suggest omitting reaction (10d) in
the postulated reaction scheme. Comparison of
the three scenarios also indicates that the hybrid
model derived from the lumped model equations
performs nearly as well as the detailed models.

5. CONCLUSIONS

This work has proposed an incremental approach
for the identification of unknown kinetics in a
chemical reactor. The approach consists of: (i)
model-free estimation of the reaction flux asso-
ciated with each species, (ii) calculation of the
reaction rates using the (partially) known system
stoichiometry, and (iii) identification of kinetic
models using neural nets to represent the corre-
lation between reaction rates and concentrations.
Here, information on stoichiometry helps choosing
the independent variables.

The predictive capability of the hybrid model
was very satisfying as were the kinetics identified
in the case of known stoichiometry. The errors
observed were largely caused by missing initial
information regarding the reaction fluxes, a phe-
nomenon that requires further investigation.

It should be emphasized that the proposed incre-
mental modeling approach is by no means limited
to the use of neural net submodels. Mechanistic
models using target factor analysis, multidimen-
sional sparse grids or multigrid methods may also
take advantage of the incremental approach.
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