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Abstract: The estimation of reaction rates is an important problem in mechanistic
modeling, monitoring and control of chemical reactors. In contrast to standard
estimation techniques where a model must be chosen for the reaction rates, we
consider them in this work as unknown time-varying functions, which also may be
interpreted as inputs. The resulting estimation task is an ill-posed inverse problem.
The paper addresses this estimation problem based on systematic methods
for nonlinear system inversion and filtering resulting in efficient estimators. A
theoretical analysis reveals the conditions for reaction rate reconstruction are those
for system invertibility. Our estimation scheme is a regularization method which
eliminates the difficulties arising with ill-posed problems. Guidelines for the design
of the estimator structure and the selection of the regularization parameters are

presented.
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1. INTRODUCTION

Reaction rates are important quantities for mech-
anistic modeling, monitoring and control of chem-
ical reactors. Since these quantities are not of-
ten directly measurable, they must be estimated
from other measurable quantities, such as tem-
perature, pressure and eventually concentrations.
This necessitates however an accurate model of
the process, which is rarely available. In real-
ity, the reaction rates are complex functions of
unknown structure of the temperature and the
concentrations of the reacting species involving
many kinetic parameters.

An approach to the estimation of reaction rates,
which does not rely on kinetic expressions, has
been investigated by Schuler and Schmidt (1992).
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It has been based on a calorimetric model com-
prising conservation equations for mass and en-
ergy. The estimator used is the Kalman filter. The
authors report on estimation of reaction rates,
conversion and rate of production and on the
use of these quantities to control runaways and
overfeeding. The problem has also been consid-
ered by Elicabe et al. (1995). The authors use a
stationary Kalman filter together with a simple
linear model basically derived from the definition
of the reaction rate and assuming knowledge of
total mass of the reacting species derived from
concentration measurements. In order to cast the
problem in a form suitable to apply standard
Kalman filtering techniques, a model must be
chosen to represent the reaction rate (de Valliére
and Bonvin, 1990; Elicabe et al., 1995; Schuler
and Schmidt, 1992). In general, estimation results
will depend on the model selected (de Valliere and
Bonvin, 1990). Hence, the type of model chosen is
a degree of freedom of the estimation scheme.



In our earlier work (Mhamdi and Marquardt,
1999), we have developed an inversion-based regu-
larization for the estimation of reaction rates with-
out assuming any reaction rates model. Instead,
the reaction rates have been considered as un-
known input functions to be estimated from con-
centration measurements of the reacting species.
Insight into this estimation problem has been
gained by noticing that this task is actually an in-
verse problem, which is roughly defined by deter-
mining causes for desired or observed effects (Engl
et al., 1996). The solution of inverse problems is
generally a difficult task since they are usually ill-
posed (Engl et al., 1996; Hansen, 1998), i.e. their
solution is not unique and/or unstable with re-
spect to data in the sense that small perturbations
in the measurements cause large variations in the
estimate. Ill-posedness is due to the smoothing
character inherent to causal relations. Different
causes, even well-separated, may result in almost
an equal or the same effect.

In this paper, we consider the extension of our
previous method (Mhamdi and Marquardt, 1999)
to deal with MIMO linear and nonlinear systems.
Our estimation scheme is based on regularization
techniques (see e.g. Engl et al. (1996) for a re-
view), which deal with the difficulties arising due
to the ill-posedness of such problems. In general
terms, regularization refers to the approximation
of an ill-posed problem by a parameter dependent
family of neighboring well-posed problems. Exam-
ples are Tikhonov regularization (Tikhonov and
Arsenin, 1977) and regularization by projection
(Kirsch, 1996). The inversion approach gives im-
portant insight into the inherent properties of the
estimation problems and, in particular, the error
trade-off to get the best solution.

The paper is organized as follows. The problem
formulation and the solution framework are stated
in Section 2 and 3 respectively. The design proce-
dure based on system inversion for unknown input
estimation is given for linear and nonlinear MIMO
systems in Section 4. In Section 5, the case study
of a bioreactor is presented. Conclusions are given
in Section 6.

2. INPUT ESTIMATION PROBLEM

We consider in this work systems ¥y given by
the following nonlinear equations

&(t) = Alx) + B(z) w(t), (1)
y(t)=C(z) + D(z) w(t) (2)
where the quantities w and y are vector-valued
functions, i.e. w(t) € R™ and y(t) € RP for
t € [to,t] and z(t) € R™ are the system states. The
quatities w(t) represent the unknown inputs to be

estimated from measurements of the outputs y.
In the application context considered these inputs
are the reaction rates of interest.

Since the observations are always corrupted with
errors, the measurements, denoted by ¢, are dif-
ferent from the true values y. We assume that the
two quantities are related through the following
equation

g(t) = y(t) + n(d), (3)

in which n represents an additive measurement
error.

We formulate the problem as follows. Let T’ be
the operator mapping the unknown input vector
w € W to the measured output y € Y, i.e.

Tysy w=y 4)

The sets W and Y are function spaces. The input-
output operator 7', is implicitly given by the
system X ny,.

The unknown input estimation (UIE) problem is
to find an approximation w of the unknown input
functions {w(7), T € [to,%]} from the noisy obser-
vations {g(7),T € [to,t]}. In other words, the es-
timation problem is to solve the integral equation
(4) for w using the available noisy measurements
g, i.e.

Tw—)y w = Zj, (5)

3. SOLUTION FRAMEWORK

In this work, we approach the UIE problem from
the perspective of inverse problems and regular-
ization theory. In general the UIE problem is ill-
posed, which means that one or more of the follow-
ing well-posedness properties, due to Hadamard
(Engl et al., 1996), does not hold: (i) for all
admissible data a solution exists, (ii) for all ad-
missible data the solution is unique and (iii) the
solution is stable. Of major concern is the stability
condition, which means, that the solution must
depend continuously on the data such that small
perturbations in the data cause small variations
in the solution.

The standard method to guarantee the solution
existence and uniqueness for problem (5) is to con-
sider generalized solutions denoted by w' (Engl
et al., 1996). In the Lo-norm, w' is the minimum
norm least-squares solution of the integral equa-
tion (5). The generalized inverse operator Tt maps
y to w’. The generalized solution w! may be hence
determined through

wh = T13. (6)



However, the usefulness of this solution depends
strongly on the properties of the inverse operator
Tt i.e. its continuity. Therefore, within the UIE
problem, we are interested in the inverse operator
and its properties.

The generalized inverse is generally unbounded
such that stability cannot be guaranteed. Regu-
larization methods are used to recover this prop-
erty of the solution. A regularization method is a
family of well-posed transformations 7T, such that

lim T,y =T'y, Vy, (7)
a—0

where « is called the regularization parameter
(Engl et al., 1996; Tikhonov and Arsenin, 1977).
In other terms, the introduction of regularization
is connected to the approximation of the inverse
operator in the family of continuous operators.

Regularization, however, introduces an extra error
term to the estimate. To see this, consider mea-
surements satisfying

79—yl <e (8)

where € is an error level. For any bounded linear
operator T, the error in the regularized solution

wt, = T,§ can be calculated according to

W, —wh =T, — Ty 9)
=To(§—y) + (Toa —ThHy. (10)

The term T, (7 — y) is called data error and (T, —
TY)y regularization or approzimation error. As a
function of a these two error types have different
behavior, such that the minimization of the total
error results in a trade-off between them. No regu-
larization method is therefore complete without a
procedure for choosing the regularization param-
eter a.

4. REGULARIZATION BY SYSTEM
INVERSION AND FILTERING

In our earlier work, a filter-based regularization,
originally investigated in (Tikhonov and Arsenin,
1977) for SISO problems, has been developped for
the solution of inverse heat conduction problems
(Blum and Marquardt, 1997) and the estimation
of reaction rates in chemical reactors (Mhamdi
and Marquardt, 1999). In the following section, we
consider the extension of the method for MIMO
linear and nonlinear systems.

4.1 Linear systems

We consider the operator Ty, given by the
MIMO LTI system X,
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Fig. 1. Filter-based regularization

#(t)=Az(t) + B w(t), (11)
yt)=C z(t) + D w(?). (12)

The considered regularization method is more
easily presented in the frequency domain. In this
context, the estimation problem is to solve the
equation

Y(s) = Gp(s)W(s) + N(s). (13)
using the observations g of the outputs y.

Assume we are able to compute the inverse trans-
fer function G, '(s), a regularization method is
constructed as follows. To suppress the high fre-
quencies due to the measurement errors, the con-
sidered regularization (Tikhonov and Arsenin,
1977; Blum and Marquardt, 1997; Mhamdi and
Marquardt, 1999) suggests the design of a pa-
rameter dependent family of functions Gy(s,q)
operating on Y according to

W(s) = Gy(s,a) G (s)Y (s). (14)

p

« is the regularization parameter (see Figure 1).
Gy(s,a) is chosen such that W (s) approximates
the true input W(s) as good as possible despite
non-vanishing noise N(s). In particular, G¢(s, a)
should be chosen such that

e 0<Gy(s,a) <1, Va,s;

e G(s,a) — 1 non-decreasingly as a — 0 and
Gy(s,0) = 1;

o lim, ,o Gy(s,a) =0, Va > 0, and
limyy00 G¢(s,a) = 0.

These conditions are sufficient for the time-
domain operator T, corresponding to Ge(s) =
Gy(s,a)G,(s) to qualify as a regularization op-
erator in the sense of equation (7) (Tikhonov and
Arsenin, 1977).

These design specifications are in general conflict-
ing, as seen from the expression of the estimation
error Ey(s) = W(s) — W(s):

Ey(s) = (Gy(s,a) = 1) W(s)

+ Gy(s,a) G;l(s) N(s). (15)

The choice of an appropriate regularization pa-
rameter « is in general difficult. However, many



methods have been proposed in the literature for
its computation (Engl et al., 1996). Most of them
are based on residual norms. They can be divided
into two classes: (i) methods based on knowledge
of the error level €, e.g. Morozov’s discrepancy
principle; and (ii) methods that do not require the
knowledge of €, e.g. Generalized Cross Validation
or the L-Curve Criterion (Hansen, 1998). The last
method is used in this work.

Inversion of LTI systems has been considered in
many publications. The approach developed by
Silverman (Silverman, 1969) is most fruitful. The
basic idea is to construct a sequence of systems
system X

2p(t) = Ag 21(t) + B w(t), (16)
yr(t) = Cr 2x(t) + Di w(?), (17)

by iteratively differentiating the output equation
(12) until we reach an iteration k = r where the
corresponding matrix D, is invertible.

Therefore D, ! exists, and we have after some
algebraic manipulations the inverse system %

4(t) = (A - BD, 'C,) z(t) + BD, 'y.(t) (18)
w(t) = =D Crz(t) + Dy, (t) (19)

with input vector y, comprising time derivatives
up to the order r of the system output y Hence,
the obtained inverse system Ei is given by a
cascade of the bank of differentiators to get y,
and the dynamical system given by (18)-(19).

A construction for the case m # p has been
given by Silverman and Payne (Silverman and
Payne, 1971). The question of invertibility with-
out knowledge of the initial states has been ad-
dressed by Moylan (1977).

4.2 Nonlinear systems

Consider now the nonlinear system (1)-(2) ¥y

z(t) = A(z) + B(x) w(t),
y(t)=C(z) + D(z) w(t)

Since the the iterative procedure of Silverman for
the construction of the inverse system is done
in the time domain using differentiation and ele-
mentary algebraic operations, it has been already
extended to time-varying and nonlinear systems
(Hirschorn, 1979). A closed representation of the
inverse system is (Daoutidis and Kravaris, 1991):

L7 Ci(2)
3=A(z) — B(z)M 1(2) :
L%Cp(z)

r df1 Y1

dtP1
+B(z)M ()| : |, (20)
dﬁz;yp
- dtPr 5
1
LPCy(2) 4
w= B(z)M (z) : - :
Bo Py,
L Cp(z) d:ﬁz
with
Lb1 Lglcl (z) L;,po‘lcl (Z)
M(z) = : :
Ly, L e, (2) Ly, L% c,p(2)
1444 Cp bpA Cp

As in the linear case, not only the system out-
puts, but also their derivatives are used as system
inputs. This inverse is not suitable for input es-
timation without additional regularization, since
unavoidable measurement errors lead to an error
amplification in the solution.

The determination of the derivatives of the in-
volved measured variable requires the solution of
linear inverse problems. The method presented in
the previous section is used here to solve them.

5. ILLUSTRATING EXAMPLE

The regularization procedure is illustrated by an
example taken from (Farza et al., 1998) using the
same set of constant model parameters.

In a bioprocess, product P is made from biomass
X and substrate S. The process modelling leads
to the nonlinear system

X =uX - DX, (21)

P=vX — DP, (22)
S=—mpX —nvX +D(Sin — 5), (23)

with initial conditions X, Py and Sg. where D is
the dilution rate and 7; and 7, are yield coeffi-
cients. The quantities p and v define the specific
reaction rates for the growth of the biomass and
for the biosynthesis respectively, which are to be
estimated from measurements of X and P. For
the generation of the measured data in simulation
the following models for p and v are used:

S Kp (1 P)
B=p -,
" (ks +5+2) et P\ Py

V=VUn0l——"F
" (K52 + S)

Figures 2-3 show the true and noisy measure-
ments. The corresponding dilution rate D varies
as a trapezoidal signal from 0.1 to 0.2/h.



Instead of assuming kinetic models for x4 and v,
these are regarded as unknown inputs wy and wa
to a nonlinear dynamic system with the states
21 =X 2o =P and 23 = S:

[\~
g

1 =—Dx1 +x1W;

TN N N N /N
N N
[=2 N

N N N N N

.7.32 = —DIL‘z + Tiw2

.fi)g = D(S»m - .’1,'3) —MNMT1W1 — N2T1W2.

[\
J

y1=21

[\
oo

Y2 =T2

The inverse system is then

Z1=1" (29)
22 = U2 (30)
1
w; =D + —1 (31)
21
1
wy=D2 4 =4, (32)
Z1 z21

The results of the estimation are shown in Figures
4-7. Although the noise is relatively small, the
calculated inputs are without regularization, as
expected, not useful (Figures 4,5). A regulariza-
tion with the approach described above results in
reasonable estimates, as shown in Figures 6,7. The
simulation was done with a second order transfer
function Gy with a regularization parameter de-
termined by the L-curve criterion.

6. CONCLUSIONS

We have considered, in this work, the estimation
of unknown reaction rates based on the theory
of inverse problems. The proposed estimator does
not assume or require any model for the reaction
rates. The method is based on system inversion
and filtering. The design has been achieved for
MIMO linear and nonlinear systems. The results
obtained show that efficient and satisfactory esti-
mations could be achieved.

As seen from our problem formulation, the method
is not restricted to the estimation of reaction
rates. It is applicable to problems where unknown
inputs w are determined from measurements of
other quantities using the considered model struc-
ture. Some other examples from chemical engi-
neering are estimation of heat fluxes, heat of reac-
tion or interphase mass transfer. Similar problems
appear also in other engineering and science areas.
Moreover, different types of system uncertainties
such as nonlinearities, parameter changes, faults
and unknown external excitation can be conve-
niently represented as unknown inputs. There-
fore, the unknown input estimation method is of
great interest for system supervision and robust
or fault-tolerant control.
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Fig. 2. Biomass concentration measurements

— true
measured

P measurement (g/1)
I

100 120 140 160
time (h)

Fig. 3. Product concentration measurements

1 , , , ,
0 20 40 60 80

This work may be extended by considering other
classes of systems where the inverse system may
be determined.
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