PERFORMANCE ASSESSMENT OF
CONSTRAINED CONTROLLERS

Lilong Huang *! Christos Georgakis **

* Chemical Process Modeling and Control Research Center
and Department of Chemical Engineering
Lehigh University, Bethlehem, Pennsylvania 18015
** Department of Chemical Engineering, Chemistry, and
Material Science, 728 Rogers Hall, Polytechnic University
Siz Metrotech Center, Brooklyn, NY 11201
USA Phone: (718) 260- 3579; Fax : (718) 260-3125

Abstract: The paper presents a new deterministic framework for assessing con-
strained control loop performance. The proposed dynamic performance index is
based on the dynamic operating work of Uzturk and Georgakis (2002). It focuses on
the time related characteristics of controllers’ response to set-point changes or step-
type disturbances. It explicitly takes into account the existence of constraints on
manipulated variables. These constraints include minimum and maximum values
as well as an upper limit on the rate of change of the input variables.
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1. INTRODUCTION

The controller design task aims to find a suitable
controller given a model of the system to be con-
trolled and a set of design goals. A well designed
control system should satisfy both performance
and robustness specifications. Performance speci-
fications include stability, disturbance regulation,
set-point tracking, transient response, and con-
straints (e.g. Boyd and Barratt, 1991). In practice,
unfortunately, controllers seldom work as initially
designed due to inapt assumptions and compro-
mises made during design, improper controller
tunings, and unaccounted model-plant mismatch,
etc.

For reliable and profitable process control ap-
plications, the chemical industry is in need of
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effective controller performance monitoring and
diagnosis technology. Harris (1989) reported the
estimation of the minimum achievable variance
of SISO controlled variable from ‘normal’ closed-
loop data. Since then, Minimum variance con-
trol (Astrém, 1970) has been widely used as a
benchmark for assessing control loop performance
(e.g. Desborough and Harris, 1992). Extensions of
SISO control loop performance assessment tech-
niques to MIMO cases were first addressed by
Huang et al. (1997) and Harris et al. (1996).

Minimum variance control provides a lower stochas-
tic bound on the achievable performance of any
feedback controller if (i) the control objective is to
minimize the steady-state output variance, (ii) the
time delay is the leading performance limiting fac-
tor, (iii) and the disturbance acting on the process
can be reduced to a filtered white noise. However,
in most practical applications, it is the constraints
on the manipulated variables, along with the time



delay and the inverse response dynamics, that
place an upper limit on the achievable perfor-
mance. With the wide availability of controllers
that explicitly take into account constraints, the
assessment of control loop performance needs to
consider the effects of constraints as well. Ko and
Edgar’s (2001) approach deserves notice as it is
the first attempt to explicitly account for con-
straints in control performance assessment.

The present paper describes a new deterministic
framework for assessing constrained control loop
performance. The proposed dynamic performance
index focuses on the time related characteristics
of the controller’s response to set-point changes
or step disturbances. It explicitly accounts for the
constraints on manipulated variables, including
magnitude and rate of change limits. The paper
is organized as follows. In section 2, we review the
minimum time-optimal control benchmark. It is
used as the basis for the proposed performance
index described in section 3. The demonstration
examples are given in section 4, and section 5
provides the conclusions.

2. TIME DOMAIN CONSTRAINED
APPROACH

The objective of this paper is to develop a perfor-
mance index to assess controller performance of
constrained systems with respect to deterministic
disturbances. The motivations are as follows. As
pointed out by MacGregor et al. (1984), in most
chemical engineering processes, the major distur-
bances are not stochastic disturbances, but de-
terministic disturbances such as sudden loads on
the system and set-point changes made by oper-
ators. Furthermore, Eriksson and Isaksson (1994)
have shown, through a very interesting example,
that the minimum variance control based per-
formance assessment technique (e.g. Desborough
and Harris, 1992) gives an inadequate measure of
performance if the control objective is set-point
tracking.

To develop a time-domain controller performance
criterion, the minimum time optimal control is
adopted as the benchmark to evaluate control
loop performance. Minimum time optimal control
explicitly takes into account the input constraints
and provides a time domain upper bound of the
achievable control performance. It is independent
of the feedback control structure one might use
on-line and reflects the inherent performance lim-
itations of the process.

2.1 Minimum-time Optimal Control

Minimum-time optimal control aims to drive the
process to the desired set-point within minimum

settling time %4, given process dynamics and con-
straints on controlled variables and manipulated
variables. The final time constraints incorporated
in the formulation of minimum-time optimal con-
trol problem ensure that the system reaches the
set-point at the minimum settling time and stays
there afterwards. In addition, set-points and dis-
turbances entering the process are assumed to be
in step form. The solution of the minimum time
control problem can be computationally intensive.
Linear programming (LP) technique is commonly
used to solve the problem in the case of linear
systems. (Refer to Uzturk and Georgakis (2002)
for more details.)

2.2 Approzimate Equivalence between Minimum
Time Optimal Control and Minimum IAE or ISE
Control

Simulations of several model SISO systems have
shown the set-point response under minimum
time optimal control to be overdamped. Very
interestingly, minimum integral absolute error
(IAE) control or minimum integral square error
(ISE) control, if modified to only allow over-
damped responses, perform almost identically to
minimum time optimal control. This equivalence
in performance is evaluated under any of the three
criteria (settling time, IAE, and ISE) 2. In the
following sections, we refer as optimal control to
any of these three control schemes.

The above equivalence among minimum time op-
timal control, modified minimum TAFE control, and
modified minimum ISE control shows that set-
tling time, IAE, and ISE are similar performance
measures. Hence, any of them can be applied as
a candidate measure for performance assessment.
In addition, for system models of order higher
than two, we can estimate the minimum settling
time by solving a modified minimum TAE or ISE
control problem, which is computationally easier
and involves one pass LP or QP optimization.

3. CONSTRAINED PERFORMANCE INDEX

The performance index can be defined as the
ratio of the performance measure (settling time,
TAE, ISE) under optimal control to that under
present control. However, as reported by Uzturk
and Georgakis (2002), for constrained controllers,
the optimal achievable performance measure de-
pends on operating conditions such as the initial
operating points, desired set-points, and distur-
bances (see Figure 2 in Uzturk and Georgakis
(2002)). As a result, the performance index used

2 Due to space limitation, demonstration plots are not
presented.



might vary with operating conditions. The major
issue is whether the settling time, IAE, or ISE
alone is a sufficient measure of controller per-
formance. An additional concern comes when a
process model is required for the estimation of the
optimal performance criteria.

3.1 Proposed Performance Index

A new constrained performance index is proposed
in this section which consists of three components
related to integral absolute error, overshoot, and
response time:

_ 1 (TAE™ N rd N tref )
=3\ 1AE rd 4 qp08 ts

The first term is defined as the ratio of a reference
integral absolute error (IAE) to that of the set-
point response. The second term penalizes the
overshoot, where rq is set-point change and y°°
is output overshoot (absolute value). The third
term evaluates the ratio of a reference settling
time to the actual settling time t5 of the set-point
response. In the above definition, the settling
time t4 is defined as the time when the set-point
response reaches and remains inside a band which
is equal to £3% of the set-point change rq.

If a process model is available, the reference IAE
and settling time can be calculated by solving a
constrained optimization problem.

Without a process model at hand, the reference
settling time and reference TAE are estimated
directly from the set-point response:

tref =t,;  TAE™ = %rd(Tad +Tw)  (2)
The rise time ¢,, defined as the time when the set-
point response reaches the value 0.97rq, is adopted
as the reference settling time. The reference IAE
is the integral absolute error of a simple reference
response, which is characterized by three param-
eters: the set-point change rq, the apparent rise
time Ty, and the apparent dead time Thq (see
Fig. 1(a)). The main advantage with this choice of
reference settling time and reference IAE is that
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Fig. 1. Demonstration diagram for definition &
drawback of proposed performance index 7

there is no requirement for a process model to
estimate the performance index 7. In addition, the
first and third terms in Eq. (1) implicitly evaluate
the contribution of the oscillating part of the set-
point response to the IAE and the settling time,
respectively.

The parameters (rq, Tar, and T,q) can be de-
termined graphically from the set-point response
(see Fig. 1(a)). The set-point change (rq) can be
determined from the final steady-state level of
the process output. g is the time when the set-
point response reaches the value 0.2ryq (point B),
and tg.g is the time when the set-point response
reaches the value 0.8rq (point C). The intercept
of line (BC) with the horizontal axes gives the
dead time T,q. The line BC intersects the line
y(t) = y*P and provides the response time Tj,.
Furthermore, from Fig. 1(a), we can see that the
following equality holds: Ty, + Taq = to.s + to.2-
Note, however, the rise time ¢, and the apparent
rise time T,, are two different concepts.
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Fig. 2. Characteristics of proposed performance
index under optimal control: curve with (o)
corresponds to initial condition ug = 0, yg =
0; curve with (O) corresponds to initial con-
dition ug = 0.5, yo = 0.5; curve with (x) cor-
responds to initial condition ug =1, yo = 1.

Simulation results have shown that, under optimal
control, the first term (n' = TAE™ /IAE) defined
in (Eq. 1) is very close to unity 1 (see Fig. 2)
3 This is true for any initial conditions, final
conditions, constraints, or process dynamics. In
addition, the second term (n'! = 79/(rd + y°%))
in Eq. (1) is equal to 1 as the set-point response
under optimal control is overdamped, monotonic,
and without steady-state offset. With the rise
time and settling time defined above, the third
term (n'''' = t./t;) is also umity for optimal

3 In the simulation, all the processes considered (see
Table 1) are normalized with unit gain. In addition, the
input values are constrained in |u(k)| < 1, Au(k)| < 0.2.



Table 1. Processes considered

Process A | G(s) =1 x e=85/(232s% + 3752 + s)
Process B | G(s) =1xe™35/(s2 +s+1)
Process C | G(s) =1/(2s+1)(4s+1)(6s+ 1)
Process D | G(s) = 1le7 985 /(25 + 1)8

controllers. Therefore, the performance index 7
defined in Eq. (1) will be close to unity for optimal
controllers w.r.t. any operating conditions.

3.2 Drawbacks

However, some drawbacks exist for the proposed
performance index n (Eq. 1). For simplicity, con-
sider a hypothetical process which provides two
set-point response curves in Fig. 1(b) correspond-
ing to two different controllers C7 and Cpy. For
both controllers, the performance indices are close
to unity, which means both controllers are almost
optimal. However, this conclusion is not true be-
cause the closed-loop process with controller Cf
responds faster than that with controller Cty.

To accommodate this drawback, it is desirable to
utilize the minimum settling time and minimum
TAE as the reference settling time and reference
TAE in the definition of performance index 7
rather than their approximation estimated from
the closed-loop set-point response (Eq. 2). Cer-
tainly, this requires the availability of a process
model. This issue will be discussed in the next
section.

3.8 Performance Assessment Framework

We propose our controller performance assess-
ment framework for constrained systems as fol-
lows:

Step 1: Estimate the steady state output devi-
ation from the desired reference set-point. If
this offset is beyond certain tolerance, either
the controller needs improvement or there exists
operability issue. Else, go to the next step.

Step 2: From closed-loop set-point response, es-
timate tg.o and tgg. Then calculate the perfor-
mance index 77. No model is necessary at this
stage. If n <« 1, it means the current controller
does not perform well. On the other hand, if
n ~ 1, it does not necessarily mean that the
current controller is almost optimal (see Sec-
tion 3.2). In this case, we do need to move to a
third step for further evaluation.

Step 3: In this step, different from step 2, min-
imum settling time and minimum TAE are cal-
culated and employed as the reference settling
time and reference IAE in the estimation of
the performance index 7. If the newly calcu-
lated performance index 7 is also close to 1,

it confirms that the controller under evaluation
performs well. However, the calculation of the
above minimum settling time and minimum
TAE demands the knowledge of an approximate
process model, which is discussed in the next
section.

3.4 Estimation of Minimum Settling Time and
Minimum IAE

We assume that the process can be approximated
as a first order plus time delay model: G(s) =
Kpe=%/(rs + 1). The parameters can be easily
estimated from closed-loop data using strategies
such as linear regression.

The advantage of this approximation lies in the
fact that the minimum settling time of a system
with delay is equal to the time delay plus the
minimum settling time corresponding to the delay
free system. In addition, an analytical solution of
optimal settling time exists for a first order system
if there are magnitude constraints on manipulated
variables (Uzturk and Georgakis, 2002). If, on the
other hand, there are constraints on the rate of
change of the manipulated variables as well, then
we need to estimate the minimum settling time
numerically.
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Fig. 3. Comparison of minimum settling time

(MST) obtained via approximate model and
exact model

Simulation results (see Fig. 3) have shown that
the minimum settling time obtained from approx-
imate first order plus time delay models is quite
close to that obtained from the exact models. Pro-
cesses considered are process C and D in Table 1.
This is true for different initial conditions, set-
point changes, and for different process dynamics.
The same results also hold for the estimation
of the minimum ITAE, calculated in ”open-loop”.
However, this approximation is not very satisfac-
tory if the operating conditions are far from the
initial operating point. To handle this inefficiency,
one could use more accurate models, for example,
a second order plus time delay model.

4. EXAMPLES

In this section, we will use two examples to
illustrate the proposed method.



4.1 Example I

For simplicity, consider the integral process (G(s) =
0.104 x e=3% /). PI controllers with different tun-
ings (Ziegler-Nichols (ZN) and Tyreus-Luyben
(TL) tunings), both with and without anti-reset
windup (ARWU) schemes, are selected for com-
parison (see Table 2). 7y in Table (2) is the
tracking time constant (Ogunaike and Ray, 1994,
p. 585). Ounly magnitude constraints on manipu-
lated variables are considered: |u| < 1.

Table 2. PI tunings for example I

Tuning K. I Tt
TL 1.58 26.4 3.5
ZN 2.30 10.0 1.7

Closed-loop set-point step responses correspond-
ing to different controllers are shown in Fig. (4).
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Fig. 4. Comparison of closed-loop response under
different controllers

Set-point responses show that controller Cy per-
forms the worst because it gives the largest over-
shoot and longest settling time. Controller Cy is
a bit better as it has smaller overshoot. How-
ever, both controllers have comparable perfor-
mances because they have much the same IAE
and settling time values. Controllers C3 and Cjy
have performances very close to that of the modi-
fied minimum IAE (mMIAE) controller. However,
controller Cj3 is a bit better than controller Cy as
it has fewer oscillations and shorter settling time.

Based on the above qualitative analysis of the con-
troller responses, we expect that nc, <~ nc, < 1
and n¢, < ne, ~ 1. The performance index 7
given in Table (3), which is calculated without a
process model, agrees very well with this expecta-
tion.

We can easily determine the poor performance of
both controllers Cy and C7 with the index esti-
mated without the knowledge of a process model.
As performance index 7 is very close to 1 for con-
trollers C5 and Cy, further evaluation is necessary.
The minimum settling time and minimum TAE are

Table 3. Results and Comparison

C Co Cs Cy
n w/o model | 0.48 0.43 0.97 0.77
n w model 048 0.43 089 0.76

employed as the reference values in the calculation
of performance index 7. For simplicity, minimum
settling time and minimum IAE are determined
using the exact model in this example. The newly
calculated performance index, given in Table (3),
confirms that both controllers have very good
performances. Controller C's has higher index than
Cy because it allows shorter settling time.

4.2 Example IT

In this example, we consider the third order pro-
cess (process C given in Table 1). The following
unconstrained PI tunings are chosen for compari-
Son purpose.

Table 4. PI tunings for example II

Py Pl PI3
K: | 099 248 0.25
I 9.54 8.03 5.52

Closed-loop set-point responses under different PI
tunings are shown in Fig. (5). The constraints on
manipulated variables considered in this example
are |u| <1, |Au| < 0.2. Fig. 6(a) and (b) present
the performance index calculated without and
with an approximate model (1st order plus delay),
respectively.
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Fig. 5. Comparison of closed-loop set-point re-
sponses under different controllers

Fig. 6(a) indicates that the controller PI, is inad-
equate for y°P < 0.9 as its performance index is
very small. This is in accordance with the fact
that PIs results in significantly oscillating set-
point response (Fig. 5) with very large overshoot
and long settling time.
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Fig. 6. Comparison of performance index 7 of
three different controllers (see Table 4)

Fig. 6(b) confirms that the controller PI;, which
has high performance index value in Fig. 6(a),
is an acceptable one. This can be explained by
the rather satisfactory set-point responses (Fig. 5)
achieved by controller PI;. On the other hand,
Fig. 6(b) tells that controller PI3 has very poor
performance, although it leads to comparably
high performance index as controller PI; given in
Fig. 6(a). This is in agreement with the very slug-
gish set-point responses (Fig. 5) caused by PI;.
Moreover, Fig. 6(b) shows and verifies that, for
maximum available set-point change, controllers
PI; and PI; perform similarly as the optimal
controller. We see from Fig. (5) that the set-
point responses realized with controllers PI; and
PI5 coincide with that under optimal control for
yP = 1.

This example clearly illustrates the dependence
of controller’s performance upon the set-point
changes. By comparison with the optimal con-
troller, constrained PI controller’s performance
turns to be better with the increase of set-point
changes. This is due to the fact that more of
the available forcing power of the manipulated
variables are being exploited. Secondly, the per-
formance index does not change much with set-
point magnitudes when the set-point changes are
relatively small. This is because the constraints
are almost inactive in such cases, and, therefore,
the set-point responses are similar.

5. CONCLUSIONS

In this paper, we introduced a new performance
index for constrained controller performance as-
sessment w.r.t. deterministic disturbances. It in-
volves integral absolute error (TIAE), overshoot,
and response time.

A three-step framework is proposed. Steady-state
offset is the concern of the first step. In the second
step, the performance index is calculated directly
from the closed-loop set-point response. No pro-
cess model is required. If the performance index
7 is far less than 1, it indicates the controller has
poor performance. However, if the index 7 is close
to one, minimum settling time and minimum IAE

(b) w/ approx. model

benchmarks are necessary for further evaluation.
In such cases, an approximate process model is
required. We have shown that a simple model such
as first order plus time delay provides adequate
estimate for the needed minimum TAE and mini-
mum settling time.

Remark: Current research is focused on set-point
step responses only. We need and will deal with
disturbance response in the future.
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