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Abstract: In this paper, we investigate the continuous production of High Fructose
Corn Syrup (HFCS) in a Reactive Simulated Moving Bed process (RSMB). The
RSMB process combines a quasi-continuous chromatographic separation with
an enzymatic biochemical conversion of glucose to fructose. For the equilibrium
limited glucose isomerization such an integration is suitable. The optimal operation
of the RSMB process is determined using a sequential approach based on a rigorous
mathematical model of the plant. In addition, we propose a new strategy to
determine the distribution of the columns over the zones in the RSMB plant
circumventing the solution of a Mixed Integer Nonlinear Problem (MINLP).
During the operation of the RSMB process, disturbances occur (e. g. continuous
decrease of the enzyme activity) which lead to an off-spec product. The control
objective is to maintain the product purity while injecting a minimal additional
amount of eluent. We propose a nonlinear model predictive controller which
can deal with the complex hybrid dynamic of the RSMB plant as well as with
hard constraints. The parameters of the non-linear process model are periodically
estimated by least-squares fitting to online measurements. The efficiency of the
whole control concept is shown in simulation studies for a 6-column RSMB plant.
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1. INTRODUCTION

Glucose has only about 70% of the sweetness of
sucrose and is less soluble in water. At the com-
mercial concentration, glucose syrup must be kept
above room temperature to prevent crystalliza-
tion. Fructose is 30% sweeter than sucrose and
twice as soluble as glucose at low temperatures.
Using enzyme technology, by at least 50% con-
version of glucose to fructose both problems can
be overcome giving a stable high fructose corn
syrup that is as sweet as a sucrose solution. The
present world market for high fructose corn syrup
is over 5 million tons and it is still expanding.
This is due to the fact that the commercially
available ’glucose isomerase’ is remarkably resis-
tant to changing temperatures and can be han-
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dled at high substrate concentrations. Most of
the currently produced fructose syrups is obtained
by the hydrolysis of starch into glucose followed
by isomerization of glucose to fructose (Asif and
Abaseed, 1998). This process produces syrups
containing only about 42% fructose which has to
be enhanced by selective removal of glucose or by
applying multistage chromatographic separation
methods.

A 3-zones-SMB process is proposed in this paper
for the continuous isomerization of glucose, where
reaction and separation are integrated in one
apparatus leading to significant improvements in
process performance. The optimization and the
control of this complex hybrid system represent
challenging tasks, and advanced strategies are
required.

This work is structured as follows: in section I,
the process is described and a detailed mathe-
matical process model is presented. In section II,
a mathematical model-based sequential optimiza-
tion approach (Klatt et al., 2001) is aplied to this
process. In addition, we show how to use a new



multicolumn continuous process called VARICOL
which was recently introduced by (Ludemann-
Hombourger and Nicoud, 2000), in order to de-
termine the distribution of the columns over the
zones of the RSMB plant. In section III, the
control problem will be discussed. The objective
is to maintain the desired product purity using
a minimal amount of eluent. A nonlinear model
predictive controller is developed, where at every
sampling moment the optimal trajectory over a
future control horizon is calculated online. The
parameters of the rigorous process model are es-
timated periodically by least-squares fitting to
online measurements. The efficiency of the control
concept is shown in simulation studies for a 6-
column RSMB plant.

2. THE RSMB PROCESS FOR GLUCOSE
ISOMERIZATION

2.1 Process description

The process consists of a number of fixed beds,
which are interconnected to form a closed-loop
arrangement. All columns are homogeneously
packed with an ion exchange resin (Amberlite
CR-13Na) and the imobilized enzyme Sweetzyme
T (supplied by Novo Nordisk Bioindustriale). A
counter-current movement between the solid and
the liquid phase is achieved by simultaneously
advancing the inlet and outlet ports in direction of
the liquid flow. In this special Simulated Moving
Bed process, no attempt is made to achieve a
complete separation of glucose and fructose, since
the most common type of fructose syrup, usually
called high-fructose syrup, is made in two cate-
gories: HFCS42 (42% fructose) and HFCS55 (55%
fructose). For some purposes, a syrup with more
than 55% fructose , called a higher-fructose syrup
is desirable. Thus, the objective is to transform a
syrup containing only pure glucose to one, where
the glucose is partially converted to fructose.
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Figure 1. Schematic diagram of the 3-zones RSMB
process for glucose isomerization

After start-up, a reactive True Moving Bed unit
would achieve a steady-state, in which every pro-
cess variable remains constant in time at any
spatial location. In contrast, due to the discrete
switching of the columns, SMB units do not reach

a steady-state but rather a cyclic steady or peri-
odic one (see figure 2).
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Figure 2. Axial concentration profile at the begin
of the period for Purg, = 70%

2.2 Mathematical Modeling

A lot of work has been published on modeling of
chromatographic processes (Gu, 1995). Accurate
dynamic models of multi-column continuous chro-
matographic processes consist of coupled dynamic
models of each column under consideration of the
periodic port switching. A single chromatographic
column is described by the General Rate Model
which accounts for all important non-idealities of
the column, axial dispersion, pore diffusion and
the mass transfer between liquid and solid phase:
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The model is completed by the mass balances at
the nodes, and boundary and initial conditions
which represent the switching process. The ad-
sorption equilibrium and the reaction kinetic have
to be determined experimentally. For the adsorp-
tion isotherm we assume a parabolic behavior:

@ = Hicoi + kici ; + kijevicy j, i, = A, B. (2)
The reaction kinetic can be accurately described

by a first order pseudo-kinetic model (Fricke and
Schmidt-Traub, 2002):
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The parameters are taken from (Fricke and
Schmidt-Traub, 2002) and are listed in Appendix
A. The resulting system of coupled partial dif-
ferential equations can be solved efficiently using
the approach introduced by (Gu, 1995), where a
finite element discretization of the bulk phase is
combined with an orthogonal collocation of the
solid phase.

,i,J=A4,B.  (3)



3. OPTIMAL OPERATION
3.1 Optimizing the operating parameters

The goal is to minimize specific separation costs
for a given plant meeting the required product
purities after the process has reached the cyclic
steady state (CSS). For the description of the CSS,
the operator @ is introduced which represents
the process dynamics f(x,u) and the switching
operations between two switching intervals:

Xjp1 = ftT:o £(x(t),u(t))dt,
X9 = Xk,
Xpr1 = PXZ_H.

Xp41 = <I>(.'Ek) =

(4)
The switching operation causes a re-initialization
of the initial value of the dynamic simulation and
is represented by the permutation matrix P. In
the CSS, the axial concentration profile x; at the
end of period k& does not change from period to
period, which can be checked numerically as:

”(I)(Xk:) - Xk” S €EPSsteady- (5)

Then, given a SMB process with a fized column
partition, the optimization problem can be stated
as follows:

QDeaQEmIIlelrFl‘eyQIII,T COStSpec(k)
st. [|®(xk) — Xkl < epssicady, (6)

Purgs k> PUurgs min,

QI < Qmaa:-

An inequality constraint is imposed on the prod-
uct purity. Since the flow rate in zone I is the
highest one in the plant, it is constrained in order
to avoid violation of the maximal pressure drop
delivered by the pumps. The objective function
must be specified based on the available data on
the operating cost.

The natural degrees of freedom are the flow rates
of desorbent @Qp., feed Qpe, recycle Qrrr and
the switching period 7. In the framework of op-
timization, they are transformed to the S-factors
(Hashimoto et al., 1983), where the apparent solid
flow rate (g is introduced:

_ (1—6[,)AL _ Ql 1
Qs = — P = (_Qs - f)/HA
_ Q2 1 1 _ Qs 1
ﬁz—(QS F)/HB’ﬂ3 (Qs F)/HA; (7)

and which reflects the fact that in SMB processes
absolute flow rates are less important as their
relative values. H4 and Hpg denote the slope of
the isotherm for the different species at the feed
concentrations.

We use a direct sequential algorithm for the solu-
tion of the problem (6). The process is simulated
until the cyclic steady state is reached. The con-
straints and the objective value are then evaluated

and given back to a non-linear optimizer FFSQP
(Zhou et al., 1997).

3.2 Optimizing the distribution of the columns

For this purpose, we first introduce the VARICOL
process developed by (Ludemann-Hombourger
and Nicoud, 2000), where in contrast to the SMB
process the ports are shifted asynchronously (see
figure 3).

Figure 3. 3-zone VARICOL process for glucose
isomerization

The numbers of columns per zone change during
the period. E. g. the number of columns in zone
I is one during a quarter of the period and two
for the rest of the period. This corresponds to an
average length of
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N1_1-4+2-4—4 (8)
for zone I. Analogously, No = §, N3 = 1 result.
While the SMB process is described by an integer
column distribution, the asynchronous VARICOL
process corresponds to a real number of columns
in each zone.

Thus, the VARICOL process is more flexible than
the SMB process. From the optimization point of
view, the zone lengths N; can be simply integrated
as further degrees of freedom in the NLP formu-
lated in equation 6 (Toumi et al., 2002q; Toumi et
al., 2002b).

In table 1 (second column), the optimal oper-
ating point for the VARICOL process is listed.
In this study, the objective was to minimize the
desorbens consumption for an extract purity of
70%. The optimal distribution obtained in the
VARICOL case is [0.99,1.6,3.4], i. e. the zone III
should be chosen much larger than the zones I and
II. In comparison to the optimal operating point
of the SMB-process with the configuration [2,2,2]
(first column), 40% less desorbens consumption
is reached. If the optimal VARICOL distribution is
rounded to the next integer distribution, an SMB
process with section lengths [1,2,3] results. By
this distribution, the desorbens consumption can



Table 1. Optimization of the distribution of the columns among the zones for

Purg,=70%

SMB I VARICOL SMB II

rel. Qpe [%] 100.00 60.00 74.00
Purgg [%] 70.00 70.00 70.00
Qre [ml/min] 1.30 1.30 1.30
Qpe [ml/min] 3.70 2.26 2.31
QRe [ml/min] 17.60 15.51 15.25
7 [min] 10.40 12.12 12.26

QEz 5.00 3.56 3.61

B: | [1.04,0.79,1.63] [0.97,0.84,1.50] [0.97,0.82,1.53]

N; [2,2,2] [0.99,1.61,3.4] [1,2,3]

be reduced by 26% in comparison to the original
[2,2,2]-configuration.

This approach led us to a considerably better
SMB distribution after only two optimization
runs. Even if mathematically this approach can
lead to a sub-optimal distribution, the search
space can be reduced when the optimal distri-
bution of the VARICOL process is known. It can
be assumed, that the optimal SMB distribution
is one of the edges in the neighborhood of the
optimal VARICOL distribution. In addition, since
the VARICOL process includes all possible SMB-
configurations, we know now a-priori the maximal
attainable performance in term of desorbens con-
sumption for a given plant (i. e. a given number
of columns).

4. CONTROL STRATEGY

Automatic control of the SMB process was ap-
plied to the separation of aromatic hydrocarbons
where on-line Raman spectroscopy can be utilized
to measure the concentration of the compound
at the outlet of the chromatographic columns
(Marteau et al., 1994). However this as well as the
geometric nonlinear control concept described in
(Kloppenburg and Gilles, 1999) are mainly based
on a model for the corresponding true moving bed
(TMB) process, where the cyclic port switching
is neglected. In the case of SMB processes with
a few number of columns (e. g. less than 8),
the TMB process does not approximate the SMB
process accurately, so that the applicability of this
control scheme to plants with few columns seems
problematic.

(Natarajan and Lee, 2000) investigated the appli-
cation of the repetitive model predictive control
(RMPC) technique on SMB processes. RMPC
is a model-based control technique developed by
incorporating the basic concept from repetitive
control into model predictive control technique. In
order to apply this technique, the switching period
of the process is assumed to be constant. This
is limiting, since the switching time can be used
as another manipulated variable to control the
process. The rigorous model was then linearised

along the optimal trajectory. Afterwards it was
reduced to a low dimensional linear model, based
on which a linear MPC controller scheme was
developed.

(Schramm et al., 2001) presented a model-based
control approach for direct control of the product
purities of SMB processes. Based on wave the-
ory, they derived relationships between the front
movements and the flow rates for the equivalent
TMB process. Based on these relationships, they
developed a simple concept with two standard PI
controllers. This concept is very easy to imple-
ment. However, similar relationships are difficult
to determine analytically in the case of nonlinear
reactive chromatography.

(Klatt et al., 2001) proposed a two-layer control
architecture where the optimal operating trajec-
tory is calculated off-line by dynamic optimization
based on a rigorous process model. The parame-
ters are adapted based on online measurements.
The low-level control task is to keep the process on
the optimal trajectory despite disturbances and
plant/model mismatch. The controller are based
upon identified models gained from simulation
data of the rigorous process model along the op-
timal trajectory. For the linear (linear adsorption
isotherm) case, linear ARX models are sufficient
(Klatt et al., 2001), whereas in the nonlinear case
neural networks (NN) were applied successfully
(Wang et al., 2002). A disadvantage of this two-
layer concept is that the stabilized front posi-
tions may not guarantee the product purities if
plant/model mismatch occurs.

4.1 Formulation of the control problem

The essence of model predictive control (MPC) is
to optimize, over the future values of the inputs,
the future process behavior. The future process
behavior is analyzed with a process model over
a finite time interval which is called the predic-
tion horizon. The first input of the optimal in-
put sequence, which spans the control horizon, is
applied to the plant and the problem is solved
again at the next time interval using updated
process measurements and a shifted horizon. In



the framework of MPC control, it is simple to
include hard constraints on the state and input
variables. Furthermore, the process behavior can
be predicted using a linear model or a nonlinear
model. However, in the latter case, getting the
ezact global solution of a non-convex optimization
problem requires formidable efforts and can not
be achieved within a fixed sampling time. Even
with state-of-the-art optimization algorithms, this
seems to be practically impossible. Therefore we
modify the nonlinear model predictive algorithm:
we are calculating a suboptimal but feasible solu-
tion which can be applied in real-time.

We propose to solve the following optimal control
problem over the finite control horizon H,:

k+H,
. . T

P P R J_Zk (Costli) + A5 R, 85,)

kj = f(xijj)a

s.t. xjr1,0 = Px;(7(5)),

= ke k+ H,
PUTEQ:,HT + APurg, > PurE‘z,mz’n;
PU/TEE,HP + APUTE;L' 2 Pu'rEz',mina

Ql,j S Qmaw;
g(/Bj) >0,j=kF,--- ak+HP‘
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We discretize the prediction horizon in cycles,
where a cycle is a switching time 7(k) multiplied
by the total number of columns. Eq. 9 consists
of a dynamic optimization problem including the
transient behavior of the process. The objective
function J is a sum of stages costs (e. g. desorbens
consumption) and a regularizing term added in
order to smooth the input sequence avoiding high
fluctuations in the input sequence from cycle to
cycle. The first equality constraint represents the
plant model evaluated over the finite prediction
horizon Hj,. The switching dynamic is introduced
vice the permutation matrix P. Since the maximal
attainable pressure drop has not to be exceeded,
constraints are imposed on the flow rates in zone
I. Further inequality constraints g(3;) are added
in order to avoid negative flow rates during opti-
mization.

The control objective is introduced by the purity
constraint over the control Horizon H, which is
additionally corrected with a bias term APurg,
resulting from the difference between the last sim-
ulated and the last measured process output. A
second purity constraint over the whole prediction
horizon acts as a terminal (stability) constraint
forcing the process to converge towards the opti-
mal cyclic steady state. It has to be pointed out
that the control goal (i. e. to fulfill the extract
purity) is introduced as a constraint. We are using
a feasible path SQP algorithm for optimization
(Zhou et al., 1997), which generates a feasible

point before it starts to minimize the objective
function.

4.2 Parameter Estimation

We assume that the concentration profiles in the
recycling line are measured during a cycle. Since
this measurement point is fixed in the closed-
loop arrangement, the sampled signal includes
information of all three zones. At every cycle and
during the start-up phase an on-line estimation
of the actual model parameters is started. The
quadratic cost functional J(p)

nsp

J(p) = Z (‘/0 o (€i,meas(t) — i Re (t))2 dt)

i=1
(10)
is minimized with respect to the parameters p. For
this purpose, the Least-Squares solver EO4UNF
from the NAG-library is used. A by-product of
the parameter estimation is the actual value xq(k)
which is given back to the NMPC controller.

4.8 Simulation study

Figure 4 shows a simulation scenario where the
desired extract purity was set to 70% at the be-
ginning of the experiment. At cycle 60, the desired
extract purity is then changed to 60%. At cycle
120, the extract purity is increased to 65%. A
fast response of the controller in both directions
can be seen. Compared to the uncontrolled case,
the control concept can keep the desired product
purity rejecting a disturbance in the enzyme activ-
ity. The evolution of the optimizer-iterations are
plotted as dashed-lines and shows that a feasible
solution can be found rapidly and that the concept
can be realized in real time. In this example the
control horizon was set to 2 cycles and the pre-
diction horizon to 10 cycles. A diagonal matrix
Rj; = 0.02[(3 3y was chosen for regularization.

We assumed an exponential drift in the enzyme
activity which corresponds to a drift in the reac-
tion rate. Figure 5 shows the result of the param-
eter estimation. A good fitting was achieved and
the estimated parameter follows the drift of the
real parameter adequately.

5. CONCLUSIONS AND FUTURE WORK

The optimal operating point, as well as the dis-
tribution of the columns over the zones, of a
RSMB plant were determined using a model-
based mathematical approach. A nonlinear model
predictive controller is presented which maintains
the product purity while using a minimal addi-
tional amount of desorbens.
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VARICOL is still 14% better in term of desor-
bens consumption than the best SMB distribution
[1,2,3] (see table 1). Therefore, it becomes more
attractive to use the VARICOL concept, where in
fact no additional investments are needed (despite
programming the logical control system).

Appendix A. SYSTEM PARAMETERS

L=60.0 [cm] k;=[1.46E-07,1.33E-07]
D=2.6 [cm] ki;=[2.90E-07,9.30E-08]
€p=0.01 [] X=0.1[]
€=0.4 [] ko=24
Dp=16.25 [mm] km=1.43E-03
ke ;—8.88E-05 keq=1.079 8 []

r=1.0 [g/cm3]
h=>5.8E-3 [g/(cm s)]
Dp=1.0E-3 [cm? /5]
vi=[+1,-1] []
H;=[0.47,0.27]

Qf=1.3 [ml/min]

c§=0 0.3 [g/cm3]
Purg,=60.0% or 70.0%

Ni=[222] or [1 23]
Apmaz=50 |bar|
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