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Abstract: Calibration-free resolution techniques provide an alternative approach to 
the development of a calibration model.  These combine spectroscopic measurement 
coupled with mathematical and statistical assumptions and give spectral profiles and 
non-quantitative concentration profiles for the unknown mixture. In this paper, a 
number of calibration free techniques including VARIMAX, ITTFA, EFA, FSWEFA, 
SIMPLISMA are described and applied to a synthetic spectral data set and the results 
are compared with the complementary technique of Independent Component Analysis 
(ICA) in particular FastICA and JADE. The results were comparable in all cases with 
ICA separating the signal from the constituent components successfully. Copyright © 
IFAC 2003 
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1. INTRODUCTION 
 
A number of issues are associated with the 
development of calibration models to predict the 
concentration of a product in a reaction.  For 
example their development in terms of data 
generation and collection can be time consuming, the 
model will be sensitive to changes in process 
conditions and it only provides quantitative 
information about the property of interest with no 
information about side reactions and intermediates. 
An alternative approach is the family of calibration 
free resolution techniques. These enable the analyst 
to make full use of time resolved spectra for the 
determination of both qualitative and quantitative 
information, i.e. pure spectra and concentration 
profiles over the course of a reaction. In addition, on-
line analysis of laboratory reactions can markedly 
improve both the timeliness and quality of 
information regarding mechanisms and kinetics, 
compared to the more traditional approaches of 

extractive sampling. Thus the application of 
calibration-free methods for on-line analysis can 
result in major advantages in terms of the 
understanding of a process.  
 
Most calibration-free resolution techniques are based 
on the assumption that the instrumental response in a 
mixture is an additive linear combination of the 
signals from individual species, the pure components.  
Consequently it obeys Beer’s law, i.e. the spectral 
response of the components is independent of time 
and concentration (Miller and Steele, 1990). In the 
case of reaction monitoring, the spectroscopic 
response, R ( JI × ) is a function of time, t, and 
spectral wavelength, l.  A mixture of K components 
gives a response, R: 
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where )(tkc  is the concentration of component k at 
time, t, and )(lks  is the spectral response of 
component, k, for wavelength, l.   
 
In this paper, a number of calibration free techniques 
are investigated including VARIMAX, ITTFA, EFA, 
FSWEFA and SIMPLISMA.  These are compared 
with Independent Component Analysis (ICA). ICA 
performs a similar function to the calibration free 
techniques.  It is a separation method that has been 
applied in speech, biomedical signal processing, 
financial time series, wireless communications and 
image feature extraction.  
  
 

2. SYNTHETIC DATA SET 
 
A synthetic data set was generated from an 
isothermal batch reaction: 
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where the reaction rates take the values, k1=0.8, 
k2=0.8.  The reaction is defined by the following 
kinetic equations: 
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where [ ]0A is the initial concentration of A, and [ ]tA , 
[ ]tB and [ ]tC are the concentrations of A, B and C, 
respectively at time t. 
 
Calibration free techniques offer a methodology to 
monitor a reaction to determine the kinetic profiles of 
A, B and C. In the case where the components A, B 
and C are unknown, calibration free techniques can 
help identify the spectral profiles. To resolve the data 
set, the following techniques a) PCA (PLS Toolbox) 
b) EFA (PLS Toolbox) c) EFA (Tauler’s Toolbox) 
d)FW-EFA (Tauler’s Toolbox) e) SIMPLISMA f) 
ITTFA  were investigated. 

  
Fig. 1. Concentration profiles of A, B and C as 

defined by equations 2, 3 and 4. 
 

Fig. 1 shows the concentration profiles and the pure 
spectra profiles for the three components of the 
reaction.  It can be concluded that the concentration 
of component A, a reagent, reduces over time, while 
the concentration of B, an intermediate, increases and 
then slowly decreases and the concentration of 
component C, the final product increases with time. 
From the spectral profile, it can be observed that 
component A has two peaks at the 20th and 30th 
wavelength. Component B has three peaks at the 40th, 
50th and 60th wavelength and component C has only 
one peak at the 70th wavelength.  The concentration 
and pure component spectra profiles can be 
combined to produce a response matrix, R, equation 
5 that defines absorbances for various wavelengths 
Fig. 2. This matrix is then used to reproduce the 
concentration and spectral profiles. 
 

SCR ⋅= T  (5)
   
 
 
 
 
 
 
 
 
 
 

Fig. 2. Graphical representation of matrix R. 
 

 
3. PRINCIPAL COMPONENT ANALYSIS 

 
If the number of components in a reaction is 
unknown, a first estimate can be obtained through 
the application of Principal Component Analysis 
(PCA). A data matrix representing I observations on 
J variables can be decomposed into two matrices: 
 

TWTR ⋅=  (6)
 
where R is the spectroscopic response, ( )JI × , W is 
the loadings matrix, ( NJ × ) and T is the scores 
matrix, ( NI × ).  For the specific reaction being 
considered, three components were selected from the 
application of PCA since the eigenvalue of the third 
component was still in excess of unity. This is in 
accord with the expected result. 
 
 

4. EVOLVING FACTOR ANALYSIS 
 
Evolving Factor Analysis (EFA) is based on the 
concept of sequential expanding windows, Keller 
and Massart (1992). A series of spectra from a 
reaction mixture, which contains a number of 
different absorbing species, are measured. As the 
order of the spectra in a chemical reaction provides 
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additional information, sub-matrices are formed by 
adding rows to an initial sub-matrix. By analysing 
the ranks of the data matrices as a function of the 
number of additional rows, time windows are derived. 
The number of species involved is equal to the 
number of significant eigenvalues of the second 
moment matrix. As new absorbing species start to 
become significant, new factors/eigenvalues evolve 
which explain the variability in the process.  
 
EFA makes use of information in the time domain 
that for other approaches is ignored. In a reaction, the 
compound that appears first in the spectra should 
also be the first to disappear. Based on this concept, 
Tauler and Barcelo (1993) developed a technique to 
reconstruct the concentration profiles in reactions. 
For this technique, the compound windows are found 
by connecting the line of the compound that first 
appeared with the line of the last compound that 
appeared, both lines are then combined in a single 
figure from which the concentration windows are 
reconstructed. These profiles of the eigenvalues can 
be considered as a first estimate of the concentration 
profiles.  EFA was applied to the synthetic data set, 
Fig. 3.  
 
 
 
 
 
 
 
 
 
(a) PLS Toolbox               (b) Tauler's Toolbox 
 
Fig 3. Results from application of EFA. 
 
From the results of the application of the algorithm 
from the PLS Toolbox, it can be observed that the 
forward analysis indicates that 3 independent factors 
have evolved. One factor appears at the onset of the 
reaction, a second soon after the first and a third after 
the second. It is clear that these three factors 
correspond to the reagent, the intermediate and the 
final product. The backward analysis suggests that 
there is only one factor remaining at the end of the 
reaction with the two other factors disappearing. 
Once again the results confirm what is known about 
the reaction.  
 
Application of EFA using the approach in Tauler’s 
Toolbox, which involves a combined analysis of the 
data matrix, provides an initial estimate of the 
concentration profiles. However for this data set the 
concentration profile of the intermediate appears to 
have shifted from the baseline and the concentration 
at time point 22 is larger than expected. 
 
 

5. FIXED WINDOW EVOLVING FACTOR 
ANALYSIS 

 
A method that is similar to EFA is that of Fixed-Size 
Window Evolving Analysis (FSWEFA), Cuesta 
Sanchez et al, (1997). In FSWEFA the idea of the 
fixed-size window is introduced. A small ‘window’ 
of rows is selected that is moved over the data set. 
Analogous to the EFA plots, the eigenvalues of the 
fixed window (or their log) is plotted against analysis 
time. In some situations, it is possible to calculate the 
singular value decomposition at each window 
position and the associated values are plotted as a 
function of the window position.  The main 
advantage of FWEFA over EFA is that it is able to 
detect low concentrations of impurities even at low 
separations.  This is the situation in this example 
where the second eigenvalue corresponds to the 
impurity and the impurity under the main component 
can be localised. 
 
 
  
  
 
 
 
 
(a) PLS Toolbox           (b) Tauler’s Toolbox 
 
Fig. 4. Results from application of FSWEFA. 
 
For the fixed window method both the approach 
described in the PLS Toolbox and Tauler’s Toolbox 
were used with a fixed window size of 10 (Tauler, 
2002). As can be seen from Fig. 4, both approaches 
give similar results, i.e. both identify three factors. 
 
 

6. SIMPLISMA – PURE VARIABLES 
 
SIMPLISMA is a method that identifies pure 
variables (Vandeginste et al, 2002; Gourvenec et al, 
2002). It is based on the evaluation of the relative 
standard deviation of each column of data matrix, R. 
The idea is that a large relative standard deviation is 
indicative of high purity. Once the pure variables 
have been identified, the data set can be resolved into 
the pure spectra. The iterative algorithm for pure 
variables, for the SIMPLISMA method is as follows.  
Suppose that the inverse of the data matrix is 
represented by D, ( IJ × ) with elements ijd , , where 
J is the number of variables and I is the number of 
spectra. First the length jλ  for variable j is 
calculated: 
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where 222
jjj σµ +=λ ,  jµ  is the mean of variable j, 

and jσ  is the standard deviation of variable j . The 
next step is the calculation of the first relative 
standard deviation (first purity) for variable j, 1,jp : 

 
j

j
j µ

σ
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For variables with low noise range intensity, 
problems can arise. This occurs because the value of 

jµ  approaches zero so the value of 1,jp  will be 
large. To address this, the purity and length are re-
defined and a noise correction term is added. The 
next pure variable is then determined as the one most 
independent of the first pure variable. The data 
matrix is scaled by its length: 
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where a  is the correction factor for low intensity 
variables. The correlation about the origin matrix, Γ  
is defined as follows:  
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and the determinant is calculated for variable i  
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where the index 1p  represents the index for the first 
pure variable. The determinant is used as a weighting 
function and as a consequence the elements of the 
second purity spectrum become:  
 

2,2, ))/(( iiii aµσp ω⋅+=  (12)

 
and the equation for the standard deviation spectrum 
is given by: 
 

ijj
s

ij σ ,, ωσ =  (13)

 
For the general case, where  j>2 the determinant is: 
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and in a similar manner to equation (8), the general 
formulation for the purity spectrum is 

ijjjij aµσp ,, ))/(( ω⋅+=  and with the correction 

factor a  included, the values for 1,jω   become:  
 

))(/( 222
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For the identification of pure variables, the number 
of components was set to three and the noise allowed 
was 5%.  The results can be seen in Fig. 5.  The final 
profiles in Fig. 5 can be compared with the expected 
results in Fig. 1. After comparison, it can be 
concluded that the results are similar. 
 
 
 
 
 
 
 
 

Fig. 5. Concentration profiles and spectral profiles 
extracted by SIMPLISMA. 

 
 

7. VARIMAX AND ITTFA 
 
In this section, an ITTFA algorithm in combination 
with VARIMAX is investigated. The principle on 
which ITTFA is based is that an initial target is 
defined and updated until specific criteria are 
satisfied, Vandeginste et al, 1998.  The main criteria 
for success are that appropriate constraints are 
formulated for updating the targets with realistic 
initial targets being identified. Targets are adapted by 
replacing negative values that are produced in the 
estimated concentration and spectral profiles by zero. 
Thus for this application, non-negative constraints 
for the spectra and the concentration profiles are 
imposed. To select a target, different methods can be 
used for the initial profiles for each factor including 
VARIMAX rotation. VARIMAX rotation is based 
on the principle that the principal components axes 
can be rotated: 
 

OVF T=  (16)
 
where the columns of V are the abstract factors of R 
that require to be rotated into real factors.  
 
 
 
 
 
 
 
 
 
Fig. 6. Final estimates for the concentration and 

spectral profiles. 
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The matrix TV , is rotated by the orthogonal rotation 
matrix O so that the resulting matrix F fulfils the 
criterion that F has maximum row simplicity. A 
measure of simplicity of a vector is the variance of 
the square of the p elements that are to be maximised.  
After 20 iterations, the results for the specific 
reaction can be seen in Fig.  6. These results are 
compared to the expected results, Fig. 1. From the 
comparison, it can be concluded that the 
concentration and spectral profile plots appear to 
match the expected concentrations 
 
 

8. INDEPENDENT COMPONENT ANALYSIS 
 

An alternative calibration free resolution method that 
can be considered is Independent Component 
Analysis (ICA). ICA can be used to identify the 
spectral profile of each species in a mixture, i.e. 
identify the unknown components.  ICA is a method 
designed to offer a solution to the Blind Source 
Separation problem, i.e. separate the source signals 
from the observations of their mixtures. ICA can be 
considered as an extension of PCA in that while PCA 
identifies principal components that are uncorrelated 
and that are linear combinations of the observed 
variables, ICA extracts components (IC’s) that are 
independent and that constitute the observed 
variables, Hyvarinen et al, (2001). 
 
Basically an ICA model is a “statistical latent 
variable model” in the sense that it describes how the 
observed data are generated by a process of mixing a 
number, n, of recorded signals θ . The signals θ  are 
statistically mutually independent by definition and 
are called independent components (ICs). The basic 
problem is: 
 

nmnmmm aaa θθθη +++= …2211 , ∀  nm ,,1…=  (17)
 
where mη  are the observed random variables that 
are modeled as linear combinations of n random 
variables mθ  and the njiaij ,,1,  , …=  are real 

coefficients that are assumed to be unknown. It is 
also assumed that each mixture mη  and each 
independent component mθ  are random variables 
and not time signals or time series. Equation 17 can 
be rewritten as: 
 

Aθη =  (18)
 
where η  is a column random vector whose elements 
are mη , i.e. if R is the data matrix, then n 
corresponds to each row of R, θ  is a column random 
vector whose elements are  mθ  and A  is a matrix 
with elements ija .  The statistical estimation 

problem concentrates on two aspects, under what 

conditions can the model be estimated and what can 
be estimated. The answer is that the mixing 
coefficients ija , and the ICs, mθ , must be estimated 

using the observed variables mη . For simplicity it is 
assumed that η  is a pre-whitened vector, i.e. all its 
components are uncorrelated and their variances are 
equal to unity. An alternative way to describe ICA is: 
 

Mηθ =
^

 (19) 

where 
∧
θ  is the estimate of θ , mη  is the observed 

random variable and M is a separating matrix which 
has to be estimated. Matrix M can be defined as the 
weight matrix of a two-layer feed-forward network 

where 
∧
θ  is the output and η  is the input. The 

network is constrained to have statistically 

independent elements of 
∧
θ , i.e. they have non-

Gaussian distributions. Non Gaussianity can be 
measured by either kurtosis or negentropy. 

   
 
 
 
 
 
 
 
 
 
 

Fig. 7. Estimated spectral profiles using ICA. 
 
The problem of spectral analysis in chemical 
mixtures represents a very similar problem to that of 
ICA since it is assumed in spectral analysis that the 
components of interest are strongly related to the 
data of the mixture through Beer Lambert's law. 
Hyvarinen and Oja (1997) have developed an 
algorithm, FastICA that is used in this paper for the 
separation of the spectral profiles. Non-gaussianity 
was a main characteristic of the spectral for this 
example. The results can be seen in Fig. 8.  

Fig. 8. Results of the application of JADE. 

Another ICA algorithm that was also evaluated was 
the “Joint Approximate Diagonalization of 
Eigenmatrices” (JADE) (Cardoso, 1999). It is a 
cumulative-based batch algorithm for source 
separation. The results can be seen in Fig 8. ICA is 
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shown to be effective for the analysis of spectral data. 
The difference in scaling does not affect the 
qualitative information gained.  The main peaks are 
situated where expected and the components are 
easily recognisable.  

 
 

9. JADE AND MCR-ALS 
 
Multivariate Curve Resolution-Alternating Least 
Squares (MCR-ALS) is a method developed by 
Tauler (2002). During the procedure, the initial 
estimates of the concentration profiles or the species 
spectra are given and then new concentration profiles 
are calculated by least-squares. In this application, 
the results from the JADE algorithm were used as an 
initial estimate of the spectral profiles. The results 
can be seen in Fig. 9.  Compared with Fig. 8, the 
spectral profiles have clearly improved and the 
concentration profiles are also reproduced. The 
constraints of unimodality and non-negativity were 
imposed. Once the concentration profiles and the 
pure spectra became stable, the resulting data matrix 
was resolved. 

Fig. 9. MCR-ALS with initial estimate by JADE.  
 

 
10. CONCLUSIONS 

 
A number of calibration-free resolution techniques 
have been presented. The application of these 
techniques to an artificially generated spectral data 
set has demonstrated that they are all effective in 
terms of its resolution. In addition ICA i.e. both 
FastICA and JADE can be regarded as another 
method for the resolution of chemical mixtures. The 
combination of MCR-ALS and JADE also gave good 
results. Although the chemical mixture described in 
this application is simple, ICA has shown that 
unknown components in a mixture can be identified 
by the spectra of separated independent components.  
As an analyst will typically know the range of 
possible co-existing species in an analytical sample 
but not the exact number and identities, ICA could 
prove to be an effective technique. A further 
advantage of ICA is that it enables the 

implementation of the resolution of data in limited 
time. Furthermore ICA could be applied in process 
monitoring and control and this area is now being 
considered. 
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