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Abstract: Pressure swing adsorption (PSA) plants consist of several fixed-bed
adsorbers and are operated as cyclic multi-step processes. PSA processes are used
for the separation and purification of gas mixtures. Based on a rigorous distributed
parameter model of the considered 2-bed PSA plant, a process control scheme is
derived which is composed of a nonlinear feedforward control and a linear feedback
control. For the design of the feedforward control, a numerical approach for the
inversion of the rigorous plant model is presented. The designed trajectory control
scheme is evaluated by use of the PSA plant simulation model.
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1. INTRODUCTION

Pressure swing adsorption (PSA) is a standard
process technique for the separation of gas mix-
tures (Ruthven et al., 1994). The plants consist
in general of several fixed-bed adsorbers and are
operated as cyclic multi-step processes, i.e. the
connections between the different adsorbers are
changed by the switching of valves at the transi-
tion from one cycle step to the next. Thereby, a
periodic operation is realized for the adsorption
process.

In this contribution, a 2-bed pressure swing ad-
sorption plant for the production of oxygen from
air is considered. Its flowsheet is shown in Figure
1. Each fixed-bed adsorber is described by a non-
linear model with distributed parameters (Unger,
1999). The implementation of a rigorous PSA
model within e.g. the simulation environment
Diva (Kohler et al., 2001) enables its dynam-
ical analysis and the evaluation of new control
schemes.

A characteristic feature of PSA plants concerns
the occurrence of nonlinear travelling concentra-
tion waves which are alternating their propagation
direction as a consequence of the periodic process
operation. In accordance with the cyclic coupling
of the fixed-bed adsorbers, the occurring waves
travel back and forth within the two adsorber
beds and are thereby changing their shape, see
Figure 1. The cycle time as well as the duration of
the cycle steps do considerably affect the product
concentration, because they determine the extent
of breakthrough of a concentration front at the
product end of the adsorber beds. The cycle time
is therefore considered to be the manipulating
variable of the process.

The appropriate operation of the PSA plant re-
quires the solution of two control tasks in order
to guarantee a desired purity of the product,
i.e. the average concentration in the oxygen tank,
see Figure 1. These control tasks comprise the
stabilization of operating points as well as the
trajectory control for set-point changes. The main
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Fig. 1. Flowsheet of a 2-bed pressure swing adsorption plant for oxygen production from air with travelling
oxygen concentration waves yp, (2,t), @ € {1,2} in both beds (middle), the coupling schemes for the
adsorbers during a 4-step cycle (bottom), and the proposed process control scheme (top).

topic of this contribution is the trajectory control
of the product purity. Therefore, a process control
scheme is presented which consists of a feedfor-
ward control and a feedback control, see Figure 1.

The paper is organized as follows: in the next
section, the model of the 2-bed pressure swing
adsorption plant for the production of oxygen
from air is briefly introduced and the occurring
control design problem is specified. Then, an ap-
proach for the numerical model inversion used for
the determination of the feedforward control is
explained, the design of the feedback control is
discussed, and the whole process control scheme
is presented. Finally, the efficiency of the whole
control concept is demonstrated by simulations
with the rigorous PSA model.

2. TWO-BED PRESSURE SWING
ADSORPTION PLANT

The considered 2-bed PSA plant, Figure 1, is used
for the oxygen production from air for medical
purposes. The produced oxygen is stored in a tank
from which it is taken off by the consumer. The

operation cycle consists of four steps: adsorption,
pressure equalization I, purge, and pressure equal-
ization II. The related four coupling schemes of
the two adsorbers are depicted at the bottom of
Figure 1.

2.1 Nonlinear PSA plant model

Each adsorber consists of a series connection of a
prelayer and an adsorption layer with space ranges
0 <2< L; and L; < z < L, respectively, see
Figure 1. The adsorption layer model® considers
air as a binary mixture of oxygen and nitrogen,
and emanates from two phases, i.e. a gaseous
and an adsorbed phase. The prelayer adsorbs
moisture, which is neglected, and is therefore
modeled as a gaseous phase only.

The distributed parameter model for the adsorp-
tion layer of each adsorber, i € {1, 2} consists of
six quasilinear partial differential algebraic equa-
tions for the pressure pf(z, t), oxygen mole fraction

1 The detailed model as well as simulation results can be
found in (Unger, 1999) and are also given in (Bitzer and
Zeitz, 2002; Bitzer et al., 2002).
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(The BCs depend on the connections between the
adsorbers during the jt* cycle step of the k*h cycle, see
Figures 1 and 2.)

A similar model of 4 PDAEs with BCs and ICs is given
for the prelayer.

Model of oxygen tank:

dat :
ODE: Bt (mt) % =t (:zzt,w’(L,t),hfmt(t)) t>0
IC: zt(0) = =}

T
with state vector @ = [pt, ytoz, Tt] .

Table 1. Model of 2-bed PSA plant.

Y5, (2,t) in the gaseous phase, adsorbed amounts
gt (2,t), k € {02, N>}, temperature T(z,t), and
molar flux 7%(z,t). The states depend on one space
coordinate z and on time ¢.

The model of an adsorption layer can be written
in vector notation (Bitzer and Zeitz, 2002) of
partial differential algebraic equations (PDAEs),
boundary conditions (BCs), and initial conditions
(ICs) as shown in Table 1. A similar model for the
prelayer is obtained by neglecting the respective
terms and equations for the adsorbed amounts
g, k € {O2,N>} and consists therefore of four
PDAEs and respective BCs and ICs. The model of
the product tank is given by three ordinary differ-
ential equations (ODEs) for the pressure pt(t), the
oxygen mole fraction yf, (t), and the temperature
Tt(t) (see Table 1). The output molar flow rate
nt.+(t) is a time-variant operational parameter
which can be adjusted. For the simulation of the
PSA plant model, the simulation environment
Diva (Kohler et al., 2001) is used. Thereby, the
model equations are spatially discretized accord-
ing to the method of lines approach.

2.2 Cyclic operation and control problem

Each PSA plant is operated according to a spe-
cific cycle which determines the periodic oper-
ation mode of the plant. The respective opera-
tion mode represents the specific structural cou-
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Fig. 2. Scheme of the cyclic 4-step operation of
the considered 2-bed PSA plant.

plings which are associated to each step. As a
consequence, the two adsorbers are operated in
a phase shifted manner in order to attain a quasi-
continuous production (see Figure 2). Thereby,
the cycle time T, = Ath + At2 + At + At}
is the manipulating variable of the process?.
The controlled variable is the time-averaged pu-

rity Py, of the product, i.e. Pry1 = R0, 0ut/Tout
1 ptet+Tr ¢

. - _ -t - _
with 70,00t = 77 J;, Y0, Mout At and gy =
1 tet+Th . t
T, Jts Nout dt.

PSA plants can be classified as hybrid distributed
parameter systems (van der Schaft and Schu-
macher, 2000) with a time varying cycle time T,
which is used as the manipulating variable. These
properties have to be considered in course of the
design of the process control.

3. TRAJECTORY CONTROL SCHEME

The cycle time T} (or respectively the duration
Aty of the cycle step times) is in general a
rather unconventional manipulating variable in
controller design. However, it is a natural choice
for PSA plants considering their hybrid process
nature. In this context, it is emphasized that
’the area of hybrid systems is still in its infancy’
(van der Schaft and Schumacher, 2000). It has to
be considered that such a manipulating variable is
subject to constraints since a minimum amount of
time is physically required for each step. An upper
bound is also mandatory due to the cyclic oper-
ation of the plant itself. Bemporad and Morari
(1999) suggest for instance a model predictive con-
trol framework in order to control hybrid lumped
parameter systems which are modeled by linear
dynamic equations and linear inequalities. Such
an optimization based approach is currently too
complicated for the PSA plant due to the high
order of the rigorous simulation model and the
related real-time problems.

2 The cycle time Ty can be changed by At; and At},
because Ati and At; depend on the duration of the actual
pressure equalization between the two adsorbers.



Presently, PSA plants are operated based on
heuristics and the process knowledge of human
operators. The proposed process control scheme
comprises a feedforward control and a feedback
control. The feedforward control automatizes the
settings of a human operator and the feedback
control is used in order to compensate distur-
bances and model uncertainties. The feedforward
control is set up by numerically inverting the
input/output (I/O) behavior of the detailed plant
model 3. The design of a feedforward control by
an inverse I/O model adapts the ideas known from
flatness based control applied to trajectory control
of a CSTR (Rothfuf} et al., 1996).

In the following, the focus is first put on the
cyclic and time-discrete nature of the plant, which
serves for the explanation and derivation of the
model inversion strategy for the design of the
feedforward control. Then, the feedback control
design is presented.

3.1 Derivation of feedforward control

Current approaches for the controller design for
distributed parameter systems require the deriva-
tion of a simplified design model which captures
the dominant system dynamics, see e.g. (Christofi-
des, 2001). The cyclic operation is an intrinsic
property of the process. Therefore it is certainly a
shared feature of any reduced-order model which
intends to approximate the PSA plant together
with its cyclic and variable structure. From Figure
2, it becomes evident that the cyclic operation of
the PSA plant is naturally defining Poincaré maps

Try1 =g (2%, Th), Pryr = h(ze, Ti) (1)
of the internal state @y := x(tx) and the purity
Py, of such a lumped reduced-order design model.
This means that the state xj41 and the purity
Py.1 at the end of the k** cycle depend on both
the initial state x; at the beginning of that cycle
and on the cycle time T}, which becomes an
explicit variable. The iterative maps g(-) and h(:)
reflect the fundamental solution of the considered
model. Their analytical calculation is therefore
only possible in exceptional cases. Since the cycle
time T} is the manipulated and the purity Pj
the controlled variable, these iterative maps are a
time-discrete representation of the I/O behavior
of the plant. PSA plants are in general operated

3 In a previous work, cf. (Bitzer et al., 2002), a simplified
model which coarsly approximates the I/O behavior of the
PSA plant was used for the design of a feedforward control.
The proposed strategy for the numerical inversion of the
rigorous plant model allows a more precise calculation
of the feedforward cycle time, especially since it is also
possible to consider further important effects which were
not included in the simple model previously used (e.g. a

R . L4
time varying output molar flow rate n out).

at a periodic set-point* P%, i.e. with T, = T9 =
const., such that P, = P¢ = h(z*,T?) and =} =
z* = g(z*,T?%. In order to perform set-point
changes P%! — P%2 it is necessary to follow
a predetermined trajectory ® P,gl, k=0,1,...,N
with P4 = P%! and P4 = P92 The I/O
relation (1) is needed in order to determine the
feedforward cycle time T} in dependence of such
a desired trajectory PZ. Generally speaking, the
global I/O behavior of (1) needs to be inverted,
ie. T¢ = h™'(xy, P2, ). Such an inverse I/O
relation cannot be calculated analytically, but it
is identical to the solution of

0:P,f+1—h(a:k,T,f). (2)

This represents an end-value problem: the cycle
time T,f is adjusted at the beginning of each cycle
while the associated purity Pyi1 = h(zy, T2) is
obtained only at the end of that cycle. This end-
value problem can be calculated numerically by
applying the shooting method and by using the
simulation model in Table 1. The entire feedfor-
ward control sequence T,f, k=0,1,...,N is then
calculated in a repetitive way starting from the
periodic set-point P%! with ¢y = z**.

However, depending on the desired trajectory PZ,
k=0,1,...,N and the controllability of the PSA
plant, a solution T} of (2) is not guaranteed. It
is therefore required that the PSA plant dynam-
ics is taken into account and that the desired
trajectory is sufficiently smooth such that the
plant is able to follow it. Even for very smooth
desired trajectories, there may still be an individ-
ual cycle and respective desired purity increment
APZ  =Pg 1~ P¢, for which no solution T for
(2) exists. Le., if there’s only a single cycle during
the set-point change for which no solution exists,
the algorithm is not robust and a replanning of
the trajectory is necessary. Therefore, in order
to relax this problem, the described algorithm is
reformulated. Thereby, the future dynamics is also
taken into account: a moving shooting horizon °
of Ng > 1 cycles is chosen. Figure 3 illustrates
this situation for a horizon of Ny = 3 cycles. This
leads to the following zero-value problem

0= PI?—',—NH - ’_l(-’Dk,Tl?aTI?-f-la cee ’T}?+NH—1) (3)

of Ny variables instead of (2). The function A(-)
is calculated by applying (1) repeatedly. In order

4 A periodic set-point is also denoted as a so-called cyclic
steady state (CSS), which means that the conditions at
the end of each cycle are identical to those at its start.
A numerical approach for the determination and the opti-
mization of the CSS of periodic adsorption processes was
presented by Nilchan and Pantelides (1998).

5 The plant dynamics has to be taken into account for the
planning of such a desired trajectory P,f, i.e. the trajectory
has to be planned such that the plant is able to follow it.
6 Similarly to model predictive control where a moving
prediction horizon is used.
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to simplify (3), the feedforward cycle times T

are chosen as Tg,, = To, + HLATE, j =
0,1,...,Ng — 1 leading to the zero-value problem
0= Py n, — h(m, AT) (4)

for the single variable ATZ. Equation (4) is repet-
itively solved for AT as described above. The
feedforward cycle time for the k** cycle is chosen
as T = T, + AT} and the T, ;, j > 1 are
rejected. When both the desired trajectory and
the shooting horizon Ny are reasonably chosen,
then h(zy, T{) ~ P{,,, even though (4) is solved
instead of (2). The proposed strategy therefore al-
lows the robust numerical inversion of the detailed
plant model (cf. Table 1) and the calculation” of
a feedforward control sequence T,;i for a transient
set-point change.

3.2 Feedback control

In open-loop, the purity Py is influenced due to
model errors and disturbances. Therefore, a feed-
back control is necessary for the stabilization and
robust performance of desired trajectories during
set-point changes. Transferring this process con-
trol scheme to the PSA plant leads to the control
block diagram shown in Figure 4.

The feedforward injection of the calculated nom-
inal feedforward cycle time T} is similar to the
concept of exact feedforward linearization of flat
systems (Hagenmeyer, 2003). Within the vicinity
of a desired trajectory (z%,T¢, P{?), the tracking
error ey, of the plant can be stabilized against dis-
turbances by a linear control law® 71 = A. 7+

7 Currently, the feedforward control sequence needs to be
calculated offline due to the large order of the simulation
model. Using the simplified model given in (Bitzer et
al., 2002), very good starting values for the shooting
method are available and only a low number of iterations
steps are necessary for each cycle.

8 Hagenmeyer (2003) proved that the tracking error of
flat and feedforward linearized systems can be stabilized
by a PID like control. A prerequisite is a sufficiently
smooth desired trajectory. For the PSA plant, an analytical
proof is not possible due to the complex model. But,
an abundant number of simulation studies showed that
the I/O dynamics of the considered PSA plant is rather
moderate and also stable such that it can even be locally

b. e, with the tracking error e, = P¢ — Py, as
input and the output ATY = cf rr + dceg. The
straightforward design of a PID controller by use
of a simplified I/O model is discussed in (Bitzer
et al., 2002).

4. SIMULATION RESULTS

The validation of the proposed control concept
is done by simulation studies using the rigorous
simulation model. In Figure 5, the open-loop
control of a set-point change scenario for the
purity and a simultaneous variation of the output
molar flow rate nl,, is shown. It can be seen
that the purity Pj pursues the desired trajectory
P? with an almost negligible tracking error ey.
The feedforward cycle time T is calculated by
numerically inverting the detailed plant model
according to (4).

The influence of a step-disturbance occurring in
the output molar flow rate is shown in Figure 6
for the same set-point change scenario as in Fig-
ure 5. The simulation shows the open- as well as
the closed-loop case. In the closed-loop case, the
desired trajectory P is stabilized by a PID con-
troller which was derived in (Bitzer et al., 2002).
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Fig. 5. Simulation of the open-loop trajectory
control with a respective feedforward control
sequence T calculated with a shooting hori-
zon of Ny = 2. A time-variant output molar

flow rate n!,, is also considered.

5. CONCLUSIONS

A trajectory control scheme developed for a 2-
bed PSA plant has been presented. For the feed-

approximated by a linear discrete model. Simulated step
responses are e.g. given in (Bitzer et al., 2002). Based on
these considerations, the assumption that the plant can be
locally stabilized by a linear controller is reasonable.
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. 6. Simulation of the set-point change sce-
nario previously shown in Figure 5 subject
to a step-disturbance Anf,, = +0.5N1/min
superimposed to the nominal output molar
flow rate and occurring at the end of the
5th cycle. The open- and closed-loop case are
both shown.

forward control design, a strategy for the numer-
ical model inversion and the calculation of the
inverse transient I/0 behavior of the plant has
been proposed. Simulation studies showed that
the desired trajectory is well stabilized by a linear
PID controller which is designed in a first step.

Future research will be focused on the derivation
of more sophisticated reduced-order models which
consider the structural changes of the process and
which provide a precise representation of the inter-
nal plant dynamics. These reduced-order models
will then allow real-time calculations and depend-
ing on the reduced model also the application
of advanced analytical methods for the process
control design.

Further issues for future research are the exper-
imental validation (Bitzer et al., 2002) of the
process control concept as well as its extension
to other cyclic multi-step processes, e.g. a 3-bed
PSA plant (Unger, 1999).
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