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Abstract: This paper presents a simulation-based strategy for designing a nonlinear
override control scheme to improve the performance of a local linear controller.
The higher-level nonlinear controller monitors the dynamic state of the system
under the local controller and sends an override control action whenever the
system is predicted to move outside an acceptable operating regime under the local
controller. For this purpose, a cost-to-go function is defined, an approximation of
which is constructed by using simulation or historic operation data. The cost-
to-go function delineates the “admissible” region of state space within which the
local controller is effective, thereby yielding a switching rule. The same cost-to-
go function can also be used to calculate override control actions designed to
bring the system state back into the admissible region as quickly as possible.
One potential problem of this approach is the lack of robustness when the
simulation data sparsely cover the state space and the data-based approximation
of the cost-to-go function is extrapolated to a region previously unseen. Hence,
successful application of the proposed method requires safeguarding against undue
extrapolations. For this reason, a kernel-based local approximation, instead of a
global approximator like a neural network, is used to interpolate the cost-to-go
values. It is shown that the kernel-based local regression provides convenient means
to implement a risk-sensitive control scheme which avoids excessive extrapolation.
The proposed scheme is demonstrated and discussed with nonlinear examples.
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1. INTRODUCTION

Model predictive control (MPC) is being widely
used in the process industry because of its abil-
ity to control multivariable processes with hard
constraints. Most of the current commercial MPC
solutions are based on linear dynamic models,
which are easier in terms of identification and on-
line computation (Qin and Badgewell, 1997). On
the other hand, many chemical processes exhibit
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strong nonlinearities. This disparity has prompted
several studies on MPC formulations with nonlin-
ear system models (Lee, 1997). Since most Non-
linear MPC (NMPC) formulations require online
solution of a nonlinear program (NLP), issues
related to computational efficiency and stability of
a control algorithm have received much attention.

The initial focus was on formulating a computa-
tionally tractable NMPC method with guaranteed
stability. Mayne and Michalska (1990) showed
that stability can be guaranteed by introducing
a terminal state equality constraint at the end of



prediction horizon. In this case, the value function
for the NMPC can be shown to be a Lyapunov
function under some mild assumptions. Because
the equality constraint is difficult to handle nu-
merically, Michalska and Mayne (1993) extended
their work to suggest a dual-mode MPC scheme
with a local linear state feedback controller in-
side an elliptical invariant region. This effectively
relaxed the terminal equality constraint to an
inequality constraint for the NMPC calculation.
The dual-mode control scheme was designed to
switch between the NMPC and the linear feed-
back controller depending on the location of the
state. Chen and Allgöwer (1998) proposed a quasi-
infinite horizon NMPC, which solves a finite hori-
zon problem with a terminal cost and a terminal
state inequality constraint. The main difference
from the Michalska and Mayne’s method is that
a fictitious local linear state feedback controller is
used only to determine the terminal penalty ma-
trix and the terminal region off-line and switching
between controllers is not required.

These NMPC schemes have theoretical rigor but
have some practical drawbacks. First, these meth-
ods still require solving a multi-stage nonlinear
program at each sample time. Assurance of a glob-
ally optimal solution or even a feasible solution
is difficult to guarantee. Second, the optimization
problem for determining the invariant region for
a local linear controller and the corresponding
terminal weight are both conservative and com-
putationally demanding.

Motivated by the drawbacks and the industry’s
reluctance to adopt full-blown NMPC, we propose
an override (or supervisory) control strategy for
monitoring and improving the performance of a
local controller. Our method is similar to the dual-
mode MPC suggested by Michalska and Mayne
in that both switch between two different con-
trol policies depending on current location of the
state. However, we employ a cost-to-go function
based approach instead of NMPC. First a cost-to-
go function under the local controller is defined,
which serves to delineate the admissible region
within which the local controller can effectively
keep the system inside acceptable operating lim-
its. The same cost-to-go function is also shown
to facilitate the calculation of override control
actions that will bring the system outside the ad-
missible region back into the region as quickly as
possible. We propose to use simulation or historic
data to construct an approximation to the cost-
to-go function. With the cost-to-go function, an
override control action can be calculated by solv-
ing a single stage nonlinear optimization problem,
which is considerably simpler than the multi-stage
nonlinear program solved in the NMPC.

One potential problem of using the cost-to-go val-
ues approximated using simulation data is that it
is only accurate within regions where data existed.
Hence, in the on-line calculation, one has to safe-
guard against unreasonable extrapolation of the
cost-to-go function approximator. This leads to
a risk-sensitive control scheme, where the quality
of approximation gets reflected in the cost-to-go
value. In this paper, we propose to use a local
regression based on Gaussian kernel in order to
implement the risk-sensitive control, which avoids
unreasonable extrapolations.

2. SIMULATION-BASED CONSTRUCTION
OF AN OVERRIDE CONTROLLER

The proposed scheme uses either simulation or
actual plant data to identify the region of the state
space, in which the local controller can effectively
keep the system inside an acceptable operating
regime (defined by some inequalities in the state
space). We do this by assigning to each state a
‘cost-to-go’ value, which is defined as

Jµ(x0) =
∞∑

i=0

αiφ(xi) (1)

where Jµ(x0) is the cost-to-go for state x0 under
the local control policy u = µ(x), 0 < α < 1 is
a discount factor, and φ(xi) is a stage-wise cost
that takes the value of 0 if the state at time i
is inside the acceptable operating limit and 1 if
outside when x0 is the state at time 0. This way,
if a particular state x0 under the control policy
evolves into a state outside the limit in some near
future under the policy µ, the cost-to-go value will
reflect it. On the other hand, those states that are
not a precursor of future violation of the operating
limit will have a negligible cost-to-go value. The
latter states comprise the “admissible” region.

The cost-to-go function is approximated by first
simulating the closed-loop behavior of the non-
linear model under the local linear controller for
various possible operating conditions and distur-
bances. This generates x vs. Jµ(x) data for all
the visited states during the simulation. Then the
generated data can be interpolated to give an
estimate of Jµ(x), J̃µ(x), for any given x in the
state space.

In the real-time application, whenever the process
reaches a state with a significant cost-to-go value,
it is considered to be a warning sign that the local
controller’s action will not be adequate. When this
happens, an override control action is calculated
and implemented to bring the process back to
the “admissible” region where the cost-to-go is
insignificant. One can calculate such an action by
implementing the override policy of



if J̃µ(xt+1(xt, µ(xt))) ≥ η ,

ut = arg
(

min
u′t

J̃µ(xt+1(xt, u
′
t))

)
(2)

where η is a user-given threshold value for
triggering the override control scheme. If no
u′t can be found such that J̃µ(xt+1(xt, u

′
t)) <

J̃µ(xt+1(xt, µ(xt))), then ut = µ(xt) is used for
the current sample time.

3. A KERNEL-BASED APPROXIMATOR OF
COST-TO-GO FUNCTION

In this paper, we propose to use a local regression
instead of the usual choice of a feedforward neu-
ral network to approximate the cost-to-go values.
Empirical studies show that general approxima-
tors (e.g. neural network) are not good choices
for the approximation of cost-to-go function due
to the high nonlinearity and discontinuity of the
cost-to-go function in general (Boyan and Moore,
1995). In addition, Gordon (1995) showed that the
local averager with non-expansive property (e.g.
kernel-based approximation) is compatible with
dynamic programming operator and effective for
representing local characteristics of state spaces.

Another reason for adopting the local regression
approach is our concern for grossly incorrect cost-
to-go estimates that can arise from extrapolating
to a region not accounted for in the simulation
step. In implementing a risk-averse ‘cost-to-go’
based controller, Kaisare et al. (2002) used a
feedforward neural network but gridded the state
space in order to separate regions visited by sim-
ulation from those not. For those cells with little
or no data, a high cost-to-go value was assigned
to prevent the controller from driving the state
trajectory into these uncertain regions. However,
this is difficult to implement for cases with high-
dimension state spaces.

For a convenient implementation of the risk-
averse or rist-sensitive scheme, we propose to use
a variation of Gaussian-kernel-based approxima-
tors. This structure decides whether a reliable
estimate can be given to a query point based on
the available data. For a “reliable” query point
it gives local weights calculated from a Gaussian
kernel to give more influence over the regression
to those training points closer to the query point
than those farther away. The suggested structure
of kernel-base prediction is

f̂(x0) =
∑N

i=1 Kλ(x0, xi)yi∑N
i=1 Kλ(x0, xi)

(3)

where

Kλ(x0, xi) = exp
(
−‖x0 − xi‖22

λ2

)
(4)

The number of neighbor points N is the number
of data points inside a hypersphere, the radius
of which is a user-given value r. In addition to
r, there are other parameters that user should
provide. These are the Gaussian kernel width
λ, minimum number of data points inside the
hypersphere kmin, and the high cost-to-go value
Jh to be assigned to an “unreliable” query point.
Table 1 describes how the estimate of cost-to-go
value for a query point is calculated.

Table 1. “Risk-averse” prediction using
Gaussian-kernel-based approximator

Prediction Algorithm

1. Is the query point x0 in the memory?
a. Yes: Use the value in the memory.
b. No: Go to step 2.

2. Enumerate the data points inside r around the x0.
Is the number of data points greater than kmin?

a. Yes: Average with the kernel.
a. No: J(x0) cannot be estimated. Assign Jh to x0.

4. ILLUSTRATIVE EXAMPLES

4.1 Simple Nonlinear Example

4.1.1. Problem Description We consider a sys-
tem with two states, one output, and one manip-
ulated input described by

x1(k + 1) = x2
1(k)− x2(k) + u(k)

x2(k + 1) = 0.8 exp{x1(k)} − x2(k)u(k)

y(k) = x1(k) (5)

with an equilibrium point of xeq = (−0.3898, 0.5418),
ueq = 0.

We also define the acceptable operating regime by

W (x) =
{

(x1 − x1eq) +
√

3(x2 − x2eq)
}2

+
{

(x2 − x2eq)−
√

3(x1 − x1eq)
0.3

}2

− 4 ≤ 0 (6)

A linear MPC controller was designed based on
a linearized model around the equilibrium point.
The control objective is to regulate y to yeq. The
linear MPC is used as the local controller with the
following design.

min
∆u

p∑

i=1

5ȳ2(k + i) +
m−1∑

l=0

∆ū2(k + l) (7)

with p = 2 and m = 1.

−3 ≤ ū ≤ 3

∆ū ≤ 0.2 (8)
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Fig. 1. State trajectories under local MPC and
dual-mode controller, x0 = [−0.0898 1.1418]

The closed-loop behavior under the local con-
troller starting at x0 = xeq + [0.3 0.6] =
[−0.0898 1.1418] is shown as dotted lines in Fig.
1. Though the initial point is inside the operating
limit, the system under the local linear controller
violates the limit several times until the system is
regulated to the equilibrium point.

4.1.2. Simulation-Based Design To design the
proposed override controller, closed-loop simula-
tions under the local controller were performed
using 347 initial points inside the operating limit.
The simulations generated 17006 data points and
cost-to-go values for each state in the trajectory
were calculated using Equation (1) with a value
of α = 1 and

φ(xt) =
{

1 if W (x1t, x2t) ≤ 0
0 if W (x1t, x2t) > 0 (9)

Next step is to design a Gaussian-kernel approx-
imator. Considering the coverage of state space,
following parameters were chosen: r = 0.05,
kmin = 3, λ = 0.03, Jh = 30.

The actual value of cost-to-go is zero for the states
inside the admissible region of a linear controller
and outside the region the cost-to-go will be
over unity. This makes the structure of cost-to-
go function very stiff. However, the approximator
will smoothen out the stiff structure a bit by
averaging. Therefore small tolerance value (η =
0.02) was chosen to illustrate a possible shape of
the admissible region under the local controller,
which is illustrated in Fig. 2.

4.1.3. Real-Time Application To compare on-
line performances of the local controller alone and
the dual mode controller (i.e., the local controller
combined with the proposed override controller),
eight initial points different from the training set
were sampled. We also compare the proposed
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Fig. 2. Regions under local controller with J̃(x) <
0.02

dual-mode controller with the successive lineariza-
tion based MPC (SLMPC) scheme suggested by
Lee and Ricker (1994). Finally, we also simulated
the LMPC and the SLMPC with the state con-
straints of −0.95 ≤ x1 ≤ 0.2 and −0.35 ≤ x2 ≤
0.45 (denoted by scLMPC and scSLMPC). The
prediction and control horizons of SLMPC are the
same as those of the LMPC.

The solid lines in Fig. 1 is the state trajectory
with the same initial point under the dual-mode
controller. For the first three points, the over-
ride control actions were used instead of those of
LMPC’s. The proposed scheme successfully steers
the state back to the region with lower cost-to-go
values. Table. 2 shows the sum of stage-wise cost
(the total number of violation of operating limit)
and the suggested control design outperforms for
all the test points. We can also see that imposing
state constraints did not work here as many infea-
sible solutions were returned, eventually causing
divergence.

Table 2. Comparison of performances
(total # of limit violations)

Test pt LMPC SLMPC scLMPC scSLMPC Override

1 div. 5 div. div. 0
2 3 3 div. div. 0
3 2 0 0 div. 0
4 2 0 0 div. 0
5 0 0 div. div. 0
6 0 0 0 div. 0
7 7 15 1 div. 0
8 div. div. div. div. 0

4.2 Bioreactor Example

In this section, we consider a bioreactor example
with two states: biomass and substrate (Bequette,
1998). With a substrate inhibition for growth
rate expression of biomass, the system shows
multiple steady states. To operate at the unstable



equilibrium, closed-loop control must be used.
The system equation is:

dx1

dt
= (µ−D)x1

dx2

dt
= D(x2f − x2)− µx1

Y
(10)

µ =
µmaxx2

km + x2 + k1x2
2

where x1 is biomass concentration and x2 is sub-
strate concentration. Table 3 shows the parame-
ters for the model at the unstable steady state.

Table 3. Model parameters: bioreactor
example

µmax 0.53 hr−1 km 0.12 g/l
k1 0.4545 l/g Y(yield) 0.4
Ds, x2fs 0.3hr−1, 4.0 g/l xs [0.9951 1.5123]

4.2.1. Local Linear Controller A linear MPC
was designed based on a linearized model around
the unstable equilibrium point with sample time
of 0.1h. The control objective is to regulate x to
xs at the equilibrium values and the manipulated
variables are the substrate concentration in the
feed x2f and the dilution rate D. The LMPC
controller parameters we used are Q = 100I, R =
10I, p = 10, and m = 5, where I is a 2 by 2
identity matrix, Q is a state weighting matrix, and
R is an input weighting matrix.

We also define an acceptable operating region as

W (x) =
{

0.52(x1 − x1eq) + 0.85(x2 − x2eq)
7

}2

+
{−0.85(x1 − x1eq) + 0.52(x2 − x2eq)

0.5

}2

(11)

−1≤ 0

which is shown in Fig.3. The input constraints for
MPC is

0 ≤ D ≤ 0.5 |∆D| ≤ 0.2
0 ≤ x2f ≤ 8 |∆x2f | ≤ 2 (12)

The closed-loop behavior under the LMPC for
different initial points are shown in Fig. 3. As
in the previous example, the LMPC cannot drive
the state back into the equilibrium point without
violating the operating limit.

4.2.2. Simulation-Based Dual Mode Controller
With the same definition of one-stage cost as
in Equation (9), a cost-to-go-based override con-
troller was designed. For the simulation, 109 ini-
tial points were sampled inside the operating limit
and closed-loop simulations under the LMPC
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Fig. 3. State trajectories under local MPC
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Fig. 4. State trajectory under dual-mode con-
troller

yielded 21909 points. Parameters for a kernel-
based approximator were chosen as: r = 0.1,
kmin = 5, λ = 0.05, Jh = 50, η = 0.02.

As in the previous example, the dual mode con-
troller successfully navigated the state to the
equilibrium point without violating the operating
limit by searching for the path with lowest cost-
to-go values. One of the sample trajectories tested
is shown in Fig. 4.

5. EVOLUTIONARY IMPROVEMENT OF
COST-TO-GO

Because the approximator employed in the cal-
culation of override control action is based on
the cost-to-go value of the local linear controller,
it is not the optimal cost-to-go. The resulting
override controller from the suboptimal cost-to-go
approximation is also suboptimal. Hence, further
improvement of the override control policy to steer
the system back into the admissible region of the
linear controller is possible by iteratively solving
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Fig. 5. State trajectory with the dual-mode con-
troller using improved cost-to-go

the following optimality equation (as in value-
iteration) until J̃ converges.

J̃ i+1(x) = min
u

[
φi(x) + J̃ i+1(f(x, u))

]
(13)

where f is a state transition equation and i
denotes iteration index.

For this purpose, the one-stage cost is re-defined
differently as

φi(x) =
{

1 J̃ i(x) ≥ η

0 J̃ i(x) < η
(14)

With this change, the aim of the optimal control
is to bring the system state back into the “admis-
sible” region as quickly as possible.

The value iteration was performed for the first
illustrative example and the iteration converged
after 5 steps with the following convergence crite-
rion.

‖J̃ i+1(x)− J̃ i(x)‖∞ < 0.1 (15)

Fig. 5 shows one of the state trajectory with the
initial point of x0 = xeq + [ 0.3 0.75 ] when the
improved cost-to-go function is used in the over-
ride control calculation. As shown in the figure,
the improved override controller bring the state
back into the admissible region more efficiently
than that based on the cost-to-go approximation
under the LMPC.

6. CONCLUSION

A simulation-based override control scheme was
shown to improve the performance and stability
of a given local controller. The ease of design and
implementation makes it a potentially appealing
addition to an existing controller in industrial
applications. The suggested framework can give

operators indications on the future performance
of the local controller and also suggest override
control actions, if needed. More realistic situations
such as the case with plant/model mismatch will
be studied next.
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