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Abstract: Historical plant data are useful in developing multivariate statistical
models for on-line process monitoring, soft sensors, and process troubleshooting.
For the first two purposes, historical data are used to build a model to capture the
normal characteristics of the process.  However, the presence of outliers can
adversely affect the model.  Various robust statistical techniques are investigated
in this paper for outlier identification.  For process troubleshooting and fault
identification, it is crucial to identify the key process variables that are associated
with the root causes.  Genetic algorithms (GA) are incorporated with Fisher
discriminant analysis (FDA) for this purpose.  These techniques have been
successfully applied at The Dow Chemical Company. Copyright © 2003 IFAC
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1. INTRODUCTION

Process data are rapidly collected and stored for the
chemical industry. These historical data are highly
useful in developing multivariate statistical models
such as principal component analysis (PCA) or partial
least squares (PLS) for on-line process monitoring.
One important step in applying these techniques is to
extract the normal data for  the off-line model
building phase.  Historical databases contain data
from normal operating conditions, faulty conditions,
various operating modes, startup periods, and
shutdown periods.  The presence of outliers further
complicates the task of identifying the normal data.
Outliers can disrupt the correlation structure of the
PCA or PLS model and the result will be a model that
does not accurately represent the process.   To extract
representative normal data, several outlier detection
algorithms such as resampling by half-means (RHM),
smallest half volume (SHV), and ellipsoidal
multivariate trimming (MVT) can be used.  A
multiple outlier detection algorithm, closest distance
to center (CDC), is proposed in this paper.  CDC is
conceptually similar to SHV but computationally
more efficient than SHV.  The use of the Mahalanobis
distance in the initial step of MVT is known to be
ineffective for detecting outliers.  To overcome this

limitation, CDC is incorporated with MVT.  To
increase the sensitivity for outlier detection for SHV,
CDC, and MVT, a new modified scaling approach is
proposed.

With the representative normal data identified and a
model for the process constructed , the next step is to
apply the model for on-line process monitoring.
Once a fault is detected on-line, the immediate step is
to determine the root cause.  The objective of fault
identification is to determine the variables that are
most relevant to diagnosing the fault, thereby
focusing the plant operators and engineers on the
subsystem(s) where the fault has most likely
occurred.

The contribution chart is a commonly used technique
for fault identification.  Previous results show that
contribution charts perform well for simple faults, but
are less effective for identifying complex process
faults (MacGregor and Kourti, 1995).  This
demonstrates the need to look for an alternative
method for identifying process faults.  In this paper,
GAs are incorporated with Fisher discriminant
analysis (FDA) for process fault identification



2. METHODS

2.1 Effect of Scaling

Auto scaling is commonly applied to multivariate
data.  For a data sequence {xi}, the auto scaling
procedure follows:
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where mx is the mean of the variable and s is the
standard deviation. For data that follow a normal
distribution, the probability that |di| > 3 is about
0.27%.  In the commonly used “3σ edit rule”, an
observation x is regarded as an outlier when |di| > 3.
In the presence of multiple outliers, the 3σ edit rule
can perform poorly.  This is demonstrated in Fig.  1a,
in which observations 1-960 are normal data and
observations 961 to 1440 are outliers.  By definition
outliers are data that are not consistent with the
majority of the data.  The mean and standard
deviation of the normal data are 41.1 and 0.55,
respectively.  With multiple outliers occurring on the
same side of the mean, the estimate of the mean of the
entire data sequence is increased to 42.3.  These
outliers also inflate the standard deviation estimate
more than threefold to 1.87.  The 3σ edit rule fails to
detect the outliers (i.e., |di| < 3 for all observations in
Fig.  1b).

Fig.  1. Comparison of various scalings on the same
variable.  Observations 1-960 represent normal
data and observations 961-1440 represent outliers.
The solid lines represent the ±3σ thresholds.

To reduce the effect of multiple outliers, robust
scaling has been suggested (Huber, 1989).  In robust
scaling, the mean is replaced with median and the
standard deviation is replaced with median absolute
deviation from the median (MAD):
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where xmedian is the median of x.  For the data used in
Fig.  1, the median is 41.9, which is a fairly accurate
location estimate for the normal data.  The MAD for
the data sequence is 1.17, which is a twofold
overestimate.  The 3σ edit rule with robust scaling,
commonly referred to as the Hampel identifier
(Pearson, 2001) fails to detect 60% of the outliers (see
Fig.  1c).

Modfied scaling.  To further increase the sensitivity in
detecting outliers, a modified scaling is proposed
here.  For a variable with n observations, the n/2
observations that are nearest to the median are
determined.  The mean and standard deviation of
these observations are used to autoscale the entire
data sequence.  For the data used in Fig.  1, the
estimates of the mean and standard deviation are 41.3
and 0.39, respectively, which are close to the mean,
41.1, and standard deviation 0.55, found using the
normal data only.  With modified scaling, almost all
the normal data are inside the 3σ thresholds while all
the outliers are outside the 3σ thresholds (see Fig.
1d).

2.2 Robust outlier detection algorithms

Resampling by Half-Means (RHM): Given a data set
of n observations and m process variables, a n by m
matrix X is constructed.  To start RHM, the first
sample (i = 1) is obtained by randomly selecting half
of the total observations.  The sample i is written as a
n/2 by m matrix Xsam(i) and the mean m(i) and
standard deviation s(i) vectors of the columns of
Xsam(i) are determined.  The original data matrix X is
autoscaled using m(i) and s(i), which results in a n by
m autoscaled matrix X(i). The Euclidean distance is
determined for each observation and a n by 1 vector
of vector lengths l(i) is obtained.   The data are
resampled for at least 2n times (Egan and Morgan,
1998).  All the vector lengths are then stacked into an
n by 2n matrix L.  With sufficient resamplings, it is
expected that the outliers will dominate in the upper
(1-c) portion of L.  For robust RHM, m(i) and s(i) are
replaced with median and MAD, respectively.

Smallest Half Volume (SHV): In SHV (Egan and
Morgan, 1998), the matrix X is first autoscaled and
the Euclidean distance between each pair of
observations i and j is determined.  An n by n distance
matrix D is formed and each column is sorted in
ascending order.  The column with the smallest sum
for the first n/2 smallest distances is determined.
These are the n/2 observations that are closest to each
other in the multivariate space, which represent the
most consistent portion of the normal data for most
cases.  In robust SHV and modified SHV, robust
scaling and modified scaling are applied, respectively,
to the matrix X first.  The remaining steps are the
same as the standard SHV.

Closest Distance to Center: CDC identifies the most
consistent observations by calculating the distance of
each observation from the center (i.e., mean for
autoscaling and median for robust scaling) (Chiang et
al., 2003).  In CDC, the matrix X is first autoscaled
and the distance is determined for each observation.
To equally weight the contribution for each variable
to the distance, Euclidean distance (2-norm distance)
can be used for each observation.  This
implementation is referred to as CDC2.  To emphasize



the most significant contribution of the variable to the
distance, the maximum norm distance can be used for
each observation.  This implementation is referred to
as CDCm.  The n/2 observations with the smallest
distances represent the portion of the data that are
closest to the center.  Assuming that outliers are
extreme observations that are far away from the
majority of the data, these n/2 observations represent
a portion of the normal data. Recall that the mean is
not an accurate representation of the center of the
data.  A better implementation of CDC2 and CDCm is
to use robust scaling or modified scaling prior to the
distance determination steps.

 Ellipsoidal Multivariate Trimming  (MVT): MVT is
an iterative procedure for the determination of a
robust covariance matrix (Walczak and. Massart,
1995).  In the first step of MVT, the Mahalanobis
distance is determined for observation x

 ( ) ( )*xx*x-x −= −1*Sd T
mah

where x* is the mean and S* is the covariance,
calculated using all n observations.  The n/2
observations with the smallest Mahalanobis distances
are determined.  Such observations are used to
determine the new mean x* and new covariance S*.
The Mahalanobis distance is recalculated using the
new mean x*, the new covariance S*, and the old x.
The iterative procedure continues until x* and S*
stabilize.

With the presence of multiple outliers in the original
data set, the covariance structure is disrupted.  The
use of Mahalanbis distance in the initial step of MVT
can result in masking and swamping.  As such, it is
possible that further iterations in MVT do not
improve the outlier detection proficiency.  To
overcome this weakness, robust outlier detection
techniques such as RHM, SHV, CDC2, or CDCm can
be used to determine the most consistent n/2
observations.  These observations are then used to
calculate x* and S*, upon which the initial
Mahalanobis distance is calculated.  In this paper
CDCm is used in conjunction with MVT.  This
implementation is referred to as CDCm/MVT.
Robust scaling and modified scaling are also applied
in MVT and CDCm/MVT.

2.3 Fault detection and fault identification

Principal Component Analysis:  PCA is a well-known
multivariate technique and detailed descriptions on
the subject are available elsewhere (Chiang et al.,
2001; Beebe et al., 1998).  Only a brief review is
given here.  The PCA model is calculated using the
singular value decomposition (SVD) on the
autoscaled data matrix X
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The loading vectors V corresponding to the a largest
singular values are typically retained.  These vectors
are then stacked into an m by a loading matrix P.  For

on-line fault detection using the score space, the T2

statistic can be calculated directly from the PCA
representation (Jackson, 1959).
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where t is an n by 1 score vector, and Σa contains the
first a rows and columns of Σ.

The portion of the observation space corresponding to
the m-a smallest singular values can be monitored
using the Q statistic (Jackson and Mudhlkar, 1979)
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Contribution Chart: After a fault is detected (T2  or Q
statistics are larger than the threshold), the next step is
to determine the root cause of the fault.  While
decentralized PCA techniques can often effectively
isolate the location of the fault for large-scale systems
(Georgakis et al., 1996; Wachs and Lewin, 1999), the
aim of the contribution chart is to determine the
abnormal variables by calculating the contribution of
each variable to the T2 and Q statistics (Miller and
Swanson, 1998).  Detailed procedure to implement
contribution charts is available elsewhere
(MacMregor and Kourti, 1995; Chiang et al., 2001).

Fisher Discriminant Analysis: FDA is a linear
dimensionality reduction technique, optimal in terms
of maximizing the separation between several classes
(Duda and Hart, 1973).  The FDA vectors are equal to
the eigenvectors, wi, of the generalized eigenvalue
problem

kk ww wjb SS λ=
where Sb is the between-class scatter matrix, Sw is the
within-class scatter matrix, and the eigenvalues ëk

indicate the degree of overall separability among the
classes by projecting the data onto wk.

For classification, the discriminant function is
calculated for class j = 1 to c.  An observation x is
assigned to class j that maximizes the discriminant
function.  Akaike’s information criterion has been
developed for automatically selecting the rank for
FDA using the fitness function (Chiang, et al., 2001)
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where s(a) is the cross validation classification
success rate at FDA rank a and navg is the average
number of observations per class.  The fitness
function is calculated for a = 1 to min(m,n).  The
maximum fitness value, fFDA,opt, represents the
classification results at the optimal rank.

Genetic Algorithms:  Once a fault is detected on line
using PCA, GA/FDA can be used to determine the
variables responsible for the root cause.  A detailed
review of GAs is available elsewhere (Leardi, 2001;
Leardi et al., 1992), only a brief review is given here.
Two classes of data are used in FDA.  Class 1
contains the training data representing the normal
operating conditions.  Class 2 contains data from a



time in which a fault is known or suspected to have
occurred.  GA/FDA begins with a first run by
randomly creating np chromosomes.  Only a subset of
the original variables is selected in each chromosome.   
The performance of each chromosome is evaluated
using a leave-1/5-out cross validation scheme with
FDA.  The fitness function fFDA,opt is then calculated
for all chromosomes.  Cross-over and mutations are
performed over the evolutions in order to improve the
chromosomes (i.e., increase the fitness function
fFDA,opt).  At the end of ne evolutions, the chromosome
with the highest fFDA,opt is saved.

The procedure is repeated for a second run.  The final
chromosome with the highest fFDA,opt at the end of ne

evolutions is saved.  At the end of the nr runs, nr

chromosomes are retained.  A bar chart of the
frequency of selection of each variable is then
constructed.  The plot represents the importance of
each variable for distinguishing between the two
classes.  If the fitness function is high (i.e., high
success rate in cross-validated classification), these
variables are often correlated with the root cause of
the process fault.  The variables are sorted according
to the frequency of selection.  The number of
variables required to explain the root cause can be
determined by maximizing the fitness function
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where msub is the number of retained variables,
corresponding to the first msub highest selected
variables.

3. APPLICATIONS

Fig. 2 is a process flowsheet for the Tennessee
Eastman Process (TEP).  The TEP is based on an
industrial process where the components, kinetics,
and operating conditions were disguised for
proprietary reasons (Downs and Vogel, 1993).  The
gaseous reactants A, C, D, and E and the inert B are
fed to the reactor where the liquid products G and H
are formed.  The plant-wide control structure
recommended in Lyman and Georgakis (1995) was
implemented to generate the closed loop simulated
process data for each fault.

TEP can simulate 21 process faults; Fault 6 is studied
in detail in this paper.  For Fault 6, there is a feed loss
of reactant A in Stream 1 at t = 24 hr (see variable 1
in Fig.  3), which causes the control loop on Stream 1
to fully open the A feed valve (see variable 44 in Fig.
3).  Because there is no reactant A in the feed, the
reaction will eventually stop.  This causes the gaseous
reactants D and E to build up in the reactor, and hence
the reactor pressure increases (see variable 7 in Fig.
3).  The reactor pressure continues to increase until it
reaches the safety limit of 2950 kPa, at this point the
valve for Control Loop 6 is fully open.  Clearly, it is
very important to detect this fault promptly before the

fault upsets the whole process.  The proficiencies of
contribution charts and GA/FDA are evaluated in
terms of correctly identifying the root cause for Fault
6.

Fig.  2. A process flowsheet for the TEP

Fig.  3. The time series plots for the reactant A feed
flow  (variable 1), the reactant A feed valve  (variable
44), the reactor level (variable 8), and the reactor
pressure (variable 7).  Fault 6 occurs at t = 24 hr.

To evaluate the outlier detection algorithms, 960
normal data and 480 Fault 6 data were generated.
The outlier detection algorithms were used to identify
the most consistent 720 observations (half of the total
samples).  The performance was evaluated in terms of
the number of correctly identified normal data in
those 720 observations.

4. RESULTS AND DISCUSSION

4.1. Outlier detection

For the original RHM algorithm, it is suggested that
the upper 5% (cutoff point = c = 0.95) of the vector
lengths should be checked for outliers.  It is important
to note that the cutoff point is correlated with the
number of outliers in the data set.  For a data set with
large numbers of outliers, a lower cutoff point is
desired.  For c = 0.95, only the most extreme outliers



were identified.  As c decreased to 0.75, RHM detects
more outliers.  As c decreases to 0.5, the swamping
effect is observed.  A tuning procedure is required in
order to determine the optimal cutoff point for a given
data set.

One way to determine the optimal cutoff point is to
plot the histogram of the vector lengths from all
resampling experiments (see Fig.  4 ).  A cutoff point
can be chosen as the point in which two distinct
distributions are seen.  For Fault 6 data, a cutoff point
corresponding to a vector length of 8 would appear
optimal and 93.3% were correctly identified as
normal data.
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Fig.  4. The histogram of the vector lengths for the
normal and Fault 6 data using RHM.

All versions of SHV correctly identify the normal
data for more than 99% of the observations.  The
motivation to use CDC2 or CDCm is that they are
conceptually similar to SHV, and the computation
time is far less.  For a data set with n observations, it
is required to compute n(n-1)/2 Euclidean distances
for SHV, versus n Euclidean distances for CDC.  In
other words, CDC runs (n-1)/2 times faster than SHV.
The saving in computation time is significant when n
is large.

Fig.  5. The distances using CDC.   Observations 1-
960 represent normal data and observations 961-
1440 represent Fault 6 data. Solid line represents
median of the distance.

Fig. 5 displays the Euclidean distances and
maximum-norm distances for CDC2 and CDCm,
respectively.  Robust CDC2, robust CDCm, modified
CDC2, and modified CDCm all resulted in 100%
success rate in identifying normal data.  This suggests
that all outliers are far away from the median and that
it is a good measure to identify normal data based on
the nearest distances to the median for Fault 6 data.
While CDC2 and CDCm are able to identify the
majority of the normal data, they are far less sensitive
than the robust and modified version of CDC.  This
indicates that the mean of all of the observations is
different than the mean of the normal data and the
outliers have disrupted the estimation of the true
mean of the normal data.

The initial step of MVT requires computation of the
Mahalanobis distance, which is found to be an
ineffective step for identifying outliers.  This is
shown in Fig.  6, in which the Mahalanobis distances
are plotted for MVT, robust MVT, and modified
MVT after the first and tenth iterations.  For the first
iteration of MVT, the half of the total observations
with the smallest Mahalanobis distances were
contaminated with outliers, further iterations did not
improve the proficiency of MVT.  For robust MVT
and modified MVT, the half of the total observations
with the smallest Mahalanobis distances contains
mainly normal data.  In this situation, further
iterations do improve the proficiency of MVT.

Fig.  6. The distances using MVT for iterations 1 and
10.  Observations 1-960 represent normal data
and observations 961-1440 represent Fault 6
data.  Solid line represents median of the
distance.

Robust CDCm and modified CDCm result in an
accurate estimation of the mean and covariance of the
normal data.  Further iterations improve the
proficiency of MVT slightly.

4.2 Fault detection and identification

Fault 6 occurs at t =24 hr.  For time period 24-29 hr,
GA/FDA selects the reactant A feed flow (variable 1)
99 times (see Fig.  7), indicating that this variable is
strongly related to the root cause of Fault 6.  The
optimal fitness function fGA/FDA,opt is 0.993
(corresponds to 100% correct in cross validated
classification result) when a single variable, reactant



A feed flow, is selected.  At the same time period, the
T2 statistic contribution chart indicates that the
reactant A feed valve (variable 44) contributes the
most to Fault 6 and the Q statistic contribution chart
indicate that the reactant A feed flow (variable 1)
contributes the most to Fault 6 (see Fig.  7).  Using
GA/FDA provides more direct indication for the root
cause.

For time period 29-34 hr, Fault 6 propagates to more
than half of the total variables in the process.  It will
be more difficult to identify the root cause as the
number of affected variables increases.  As shown in
Fig.  7, the reactant A feed flow (variable 1) is still
selected the most by GA/FDA, although the
frequency of selection decreases to 18.  The
contribution charts indicate that the stripper pressure
(variable 16), the reactor cooling water valve
(variable 51), the stripper steam valve (variable 19),
and the separator pressure (variable 13) contribute the
most to Fault 6 at this time period (see Fig.  7).  Time
series plots for these four variables show that
significant step changes are found.  While
contribution charts detect changes in the variables for
Fault 6, this does not directly lead to diagnosing the
root cause (Loss of component A in feed stream 1)
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Fig. 7. The variable selection using GA/FDA, the T2

statistic contribution chart, and the Q statistic
contribution chart for the period between 24-29
hr (left hand side of the plot) and between 29-34
hr (right hand side of the plot).

5. CONCLUSIONS

To extract normal data from a historical database,
robust outlier detection algorithms such as RHM,
SHV, MVT, and CDC can be used.  Using CDC as an
initial estimate in MVT results in the best overall
results using the Tennessee Eastman process data.
Modified scaling is more sensitive in detecting
outliers.

GA/FDA correctly identifies the variables that are
responsible for the root causes for the TEP data.  For
cases where the process fault propagates downstream

and affects more variables, GA/FDA has a better
persistence in identifying the root causes as compared
to contribution chart
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