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Abstract: This paper studies identification of a general single-input and single-output
(SISO) multirate sampled-data system. Using the lifting technique, we associate the
multirate system with an equivalent linear time-invariant lifted system, from which
a fast-rate discrete-time system is extracted. Uniqueness of the fast-rate system,
controllability and observability of the lifted system, and other related issues are
discussed. The effectiveness is demonstrated through simulation and a real-time
implementation. Copyright c©2003 IFAC
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1. INTRODUCTION

The term Multirate Sampled-Data (MRSD) Sys-
tems describes a common phenomena existing in
the industry that different variables are sampled
at different rates for some reasons (Chen and Qiu,
1994), e.g., a high-purity distillation column (Lee,
et al., 1992) and a bioreactor (Gudi, et al., 1995)
and CCR octane quality control (Li, et al., 2003).
Fig. 1 depicts a SISO MRSD system, where Gc is
a continuous-time linear time-invariant (LTI) and
causal system with or without a time-delay; H
is a zero-order hold with an updating period mh

and S is a sampler with period nh, where m, n
are different positive integers and h is a positive
real number called the base period; discrete-time
signals u and y are the system input and output
respectively; a continuous-time signal vc is the
unmeasured disturbance. Essentially, it is a linear
periodically time-varying (LPTV) system (Kranc,
1957), to which many system identification algo-
rithms cannot be applied directly.
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Fig. 1. A SISO multirate sampled-data system

Under such a framework, Lu and Fisher (1988,1989)
used an output error method and a least-squares
method to estimate intersample outputs based on
the fast sampled inputs and slow sampled outputs.
Verhaegen and Yu (1994) extended a Multivari-
able Output Error State Space (MOESP) class of
algorithms to identify P subsystems of an LPTV
process with period P . Gudi, et al. (1995) gen-
erated frequent estimates of the primary output
based on the secondary outputs and the regular
measurement of inputs by an adaptive inferential
strategy. Li, et al. (2001) identified a fast single-
rate model with period mh from multirate input
and output data, with an assumption that m < n.
This work motivates us: Could we do better?



Doing better implies two things: first, a fast-rate
model with period h instead of mh will be iden-
tified; second, a general MRSD system is treated
without the assumption m < n. Note that our
objective includes that of Li, et al. (2001), since a
model with period mh is readily obtained from a
model with period h. The improvement is signifi-
cant: technically, we need to use additional condi-
tions such as observability of lifted models and co-
primeness of the integers m and n (to be clarified
later); in terms of applications, the availability of
the fast-rate model with period h broadens the
choices for multirate control design; the relaxation
of assumptions makes identification of fast-rate
models for more general MRSD systems possible.

The question states precisely as follows: For a
sampling period h, the unknown continuous time
system Gc has a discrete time counterpart real-
ized by the step-invariant-transformation, Gd :=
ShGcHh, represented by a state-space model:

D + C (zI −A)
−1
B =

[

A B

C D

]

. (1)

Given the multirate sampled-data system in Fig.
1, how to identify the so-called fast-rate system
Gd?

To answer this question, we start in Section 2 with
using the lifting technique to associate such an
LPTV system with an LTI system, the so-called
lifted system. The uniqueness of recovering the
fast-rate system from the lifted system is shown
in Section 3. Section 4 analyzes controllability
and observability of the lifted system, which are
essential to the identifiability issues. Section 5
presents two approaches to compute a fast-rate
model. Section 6 illustrates the effectiveness of the
proposed methods through two examples. We end
with some conclusions in Section 7.

2. LIFTING SIGNALS AND SYSTEMS
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Fig. 2. The lifted multirate sampled-data system

Henceforth, we will focus our discussion on the
SISO MRSD system depicted in Fig. 1. Let ψ

be a discrete-time signal defined on Z+ and n

be some positive integer. The n-fold lifting op-
erator Ln is defined as the mapping from ψ to ψ:

{ψ (0) , ψ (1) , · · ·} 7→
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


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




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,
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







, · · ·


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


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.

We lift u by Ln into u, and lift y by Lm into y. The
disturbance vc is fictitiously sampled into v with
period nh, same as the output sampling period,
and v is lifted by Lm into v (see Fig. 2). Thus, u,
y and v share the same period mnh, and form a
discrete-time LTI system (Francis and Georgiou,
1988):

y = Gd u+ v (2)

Here Gd is the so-called lifted system from u to y;
it has a state space representation by matrices A,
B, C and D, which are related to A, B, C and D

of (1) as shown in Chen and Qiu (1994):

[

A B

C D

]

:= (3)
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








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



where

Dij = Dχ[jm,(j+1)m) (in) +

(j+1)m−1
∑

r=jm

CA
in−1−r

Bχ[0,in) (r)

and a characteristic function on integers is de-
fined:

χ[a,b) (r) =

{

1, a ≤ r < b

0, otherwise.

A noise model can be used to further describe the
character of the noise term v in (2), but it is not
within our current objective. Hence, we adopt an
output error model structure, since for open loop
systems, output error models will give consistent
estimates, even if the additive noise is not white
(Ljung, 1999). An innovation form of the state-
space model with the Kalman filter gain K = 0
represents the overall discrete-time lifted system:

ẋ=Ax+B u+K e, (4)

y =C x+Du+ e. (5)

Here overdot denotes one sample advance, e is a
white noise vector and x is a state vector. If p is
the order of Gd, then the dimensions of A,B,C,D
are p× p, p× 1, 1× p, and 1× 1, respectively, and
those of A,B,C,D,K are p × p, p × n, m × p,
m× n, and p×m, respectively. Note that A and
A share the same dimension.

3. UNIQUENESS OF FAST-RATE SYSTEMS

Before starting the exploration of recovering the
fast-rate system from the lifted one, a question



arises naturally: Is the recovery of Gd from Gd

unique? The answer is affirmative if m and n are
coprime. We observe:

Gd =LmSnhGcHmhL
−1
n (6)

=LmSn (ShGcHh)HmL
−1
n

=LmSnGdHmL
−1
n ,

by properties Snh = SnSh and Hmh = HhHm,
where Sn and Hm are the discrete-time downsam-
pler and the discrete-time zero-order-hold type
upsampler respectively. Since the lifting is one-to-
one, the problem of recovery of a unique Gd from
Gd is equivalent to answering a question: Is the
mapping Gd 7−→ SnGdHm one-to-one?

Proposition 1. Assume Gd is LTI and causal.
Then, the mapping Gd 7−→ SnGdHm is one-to-
one if and only if m and n are coprime.

Proof:

For sufficiency, it suffices to show that SnGdHm =
0 implies Gd = 0. Let us assume SnGdHm = 0 and
let µ be the impulse response of Gd, i.e., µ = Gdδ,
where δ is the discrete-time unit impulse signal.
It follows that for any integer i, SnGdHmU

iδ = 0,
where U is the unit time-delay operator. This
implies, by the definition of Hm,

SnGd

(

U im + U im+1 + · · · + U im+m−1
)

δ = 0.

The time invariance of Gd and the definition of
Sn imply

µ (im+ jn) + µ (im+ jn+ 1) + · · · (7)

+µ (im+ jn+m− 1) = 0, ∀i, j.

Since m and n are coprime, there exist integers
m′ and n′ such that mm′+nn′ = 1. Thus, for any
k, there always exist i = km′ and j = kn′ in (7)
to get im+ jn = k. Hence,

µ (k) + µ (k + 1) + · · · + µ (k +m− 1) = 0, ∀k.(8)

By causality of µ (k), (8) implies that µ (k) = 0,
∀k, e.g., if k = − (m− 1), then µ (0) = 0; if
k = − (m− 2), then µ (1) = 0 and so on. Hence,
Gd = 0.

The necessity is proved as follows. If m and n

are not coprime, there exists a common factor k:
m = km′, n = kn′, where m′ and n′ are coprime.
It follows from (6) that SnGdHm = Sn′GkdHm′

where Gkd = SkhGcHkh, i.e., a discrete-time
counterpart of Gc with period kh. Thus, the
mapping Gd 7−→ SnGdHm is not one-to-one, since
the mapping Gd 7−→ Gkd = SkGdHk is known to
be not injective. 2

Therefore, in order to get a unique fast-rate sys-
tem we assume that m and n are coprime. Note
that any common factor of m and n can be ab-
sorbed into h.

4. LIFTED SYSTEMS

4.1 Controllability and Observability

For a state space system to be identifiable, the
lifted system Gd generally needs to be control-
lable and observable (Ljung et al., 1999). If
the continuous-time system Gc is controllable
and observable and the sampling period is non-
pathological, then the discrete-time system Gd is
also controllable and observable (Kalman, et al.,
1963), which is still valid if a continuous time
delay exists. Francis and Georgiou (1988) have
proved that if Gd is stabilizable and detectable,
and satisfies an additional condition (∗): For every
eigenvalue λ of A, none of the mn− 1 points

λej
2πk
mn , k = 1, 2, · · · ,mn− 1

is an eigenvalue of A, then
(

Amn, AiB
)

is sta-

bilizable and
(

CAi, Amn
)

is detectable, for any
positive integer i. Based on these, we reach:

Proposition 2. Assume A satisfies the condition
(∗). If (C,A) is observable, so is (C,A); If (A,B)
is controllable and A has no eigenvalues on the
unit circle, (A,B) is also controllable.

Proof: The first part follows with some trivial
modifications from Francis and Georgiou (1998) in
which

(

CAi, A
)

was shown detectable. We prove

the second part by showing
(

A,
∑m−1

i=0 AiB
)

is

controllable, i.e., all eigenvalues of A are control-
lable. Now each eigenvalue of A has the form λmn,
where λ is an eigenvalue of A. Define functions:

g (s) :=
smn − λmn

s− λ
,

f (s) :=

m−1
∑

i=0

si.

By non-pathological sampling, g (A) is invertible
(Chen and Francis, 1995). If A has no eigenvalues

on the unit circle, then
∑m−1

i=0 λi 6= 0 . Thus f (A)
is invertible. Therefore,

rank

([

(Amn − λmnI)

m−1
∑

i=0

AiB

])

= rank

(

f (A)
[

A− λI B
]

[

f−1 (A) g (A) 0
0 I

])

= rank
([

A− λI B
])

.



Thus, (A,B) is controllable. 2

4.2 Effect of Time Delays

If there exists a continuous time delay τ larger
than h, A has at least two poles at z = 0 (Åström
and Wittenmark, 1997). Thus, the condition (∗) is
not satisfied. Observability has been shown to be
lost and a remedy is proposed by Li, et al. (2001),
which is summarized below:

First, we can identify an m×n time-delay matrix
Γ from u, y using correlation analysis (Ljung et

al., 1999):

Γ =











l00 l01 · · · l0,n−1

l10 l11 · · · l1,n−1

...
...

...
lm−1,0 lm−1,1 · · · lm−1,n−1











where lij is the estimated time delay from the j-th
input uj to the i-th output y

i
, i = 0, 1, · · · ,m− 1

and j = 0, 1, · · · , n − 1. The relation between lij
and τ is (Li, et al., 2001):

(lij − 1)mnh < τ + jmh− inh ≤ lijmnh. (9)

Second, there exists a one-to-one correspondence
between Γ and a positive integer k such that τ
is estimated as kh < τ̂ ≤ kh + h (Sheng, et al.,
2003).

Third, since m and n are coprime, there exist
integers k1 and k2 such that

k = k1m+ k2n. (10)

Then, we shift the measured input data: us [l] =
u [l − k1] and shift the measured output data:
ys [l] = y [l + k2], so that, the time delay between
us and ys is not larger than h. Hence, controlla-
bility and observability will be preserved.

4.3 Causality Constraint

Lifting causes a causality constraint, i.e., D in
(3) is lower triangular. How to identify a model
under such a constraint? A modified sub-space
identification algorithm was proposed by Li, et

al. (2001). As an easier alternative, a structured
state-space model with free parameters (Ljung,
2001) can be used to deal with the constraint.
For instance, if m = 2 and n = 3, D will be
parameterized as:

[

0 0 0
× × 0

]

,

where × marks an adjustable parameter.

5. FAST-RATE MODEL COMPUTATION

Once Gd is estimated, how to extract matrices A,
B, C? Note D = 0 if Gc is causal. The difficulty
lies in that in general A cannot be determined
by taking the mn-th roots of A. Once Â, an
estimation of A, is known, B and C can be
determined as:

Ĉ = C1, B̂ =

(

m−1
∑

i=0

Âi

)−1

Bn

where B, C are partitioned as:

B =
[

B1 B2 · · · Bn
]

, (11)

C =
[

CT
1 CT

2 · · · CT
m

]T
. (12)

Here the dimensions of B1, B2, · · ·, Bn are p × 1
and those of C1, C2, · · ·, Cm are 1×p and p is the
order of the estimated fast-rate model. Note that
the proof of Proposition 2 shows the existence of
the inverse.

We propose two approaches to compute A. The
first approach, the controllability and observ-
ability approach, is based on assumptions that
(Amh, Bmh) is controllable and (C,Anh) is observ-
able, where

Amh := Am, Anh := An,

Bmh := Bn =

m−1
∑

i=0

AiB.

Similar to the proof of Proposition 2, both as-
sumptions can be shown to be valid if the con-
ditions in Proposition 2 are true.

Step 1: Given A and B in (11), (3) implies

Anmh = A,

Bmh = Bn, AmhBmh = Bn−1, · · · , A
n−1
mh B = B1.

Thus, AkmhBmh is known for any k ≥ 0. We form
the controllability matrix Γc of (Amh, Bmh) and
the shifted controllability matrix Γ:

Γc =
[

Bmh AmhBmh · · · Ap−1
mh Bmh

]

,

Γ =
[

AmhBmh A2
mhBmh · · · ApmhBmh

]

.

Since AmhΓc = Γ and the controllability assump-
tion implies that Γc is full row rank, Amh is
uniquely determined by

Âmh = ΓΓTc
(

ΓcΓ
T
c

)−1
.

Step 2: Given A and C in (12), (3) implies

Amnh = A,



C = C1, CAnh = C2, · · · , CA
m−1
nh = Cm.

Thus, CAknh is known for any k ≥ 0. We form
the observability matrix Ψo of (C,Anh) and the
shifted observability matrix Ψ:

Ψo =









C

CAnh
· · ·

CA
p−1
nh









, Ψ =









CAnh
CA2

nh

· · ·
CA

p
nh









.

Since ΨoAnh = Ψ and the observability assump-
tion implies that Ψo is full column rank, Anh is
uniquely determined by

Ânh =
(

ΨT
o Ψo

)−1
ΨT
o Ψ.

Step 3: Now, Amh = Am and Anh = An are
estimated. Since m and n are coprime, there exist
two integers m

′

, n
′

such that

nn
′

−mm
′

= 1.

Thus, we have:

(Amh)
m′

A = (Anh)
n′

.

Therefore,

Â =
(

Âm
′

mh

)† (

Ânh

)n′

.

where † denotes a pseudo-inverse.

The second approach, the matrix roots approach,
is based on a condition that A is diagonalizable,
i.e.,

P−1AP = diag (λ1, λ2, · · · , λp) .

Since A = Amn, A and A share same eigenvectors.
If ρi = αi + jβi is a pole of Gc, then

λi = emnhρi = emnhαiejmnhβi .

Assume |mnhβi| < π for i = 1, · · · , p.

A = P diag
(

λ
1
mn

1 , λ
1
mn

2 , · · · , λ
1
mn
p

)

P−1

where λ
1
mn

i is the principal n-th root of λi; if this
condition is not true, A can be found by searching
through all mn-th roots of A.

6. EXAMPLES

Example 1:

For a system depicted in Fig. 3, take the process
and noise model to be

Gc (s) =
1

20s2 + 4s+ 1
e−5s, Nc (s) =

1

10s+ 1
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Fig. 3. A SISO MRSD system simulation diagram

and m = 3, n = 2, h = 1 sec. We generate
a low frequency random binary signal (RBS) as
the input signal u. e is a white noise. The signal-
to-noise ratio (SNR) is 3 : 1. The identification
procedure is: First, we estimate the time delay as
6 sec and shift the measured output and input
data as described in Section 4.2; second, we lift
the shifted data to form the lifted signals with a
time delay no larger than h; next, based on the
lifted signals, we choose a 2nd order lifted model
Ĝd and compute a fast-rate model Ĝd with period
h; finally, we incorporate the estimated time delay.
Fig. 4 compares step responses of the actual
system Gd and the estimated fast-rate models Ĝd.
The models are obtained through the proposed
approaches: the controllability and observability
approach and the matrix roots approach. Both
achieve satisfactory results.

Step responses of the actual system and models

Time (sec)

A
m

pl
itu

de

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 4. Step responses of the actual system
(solid) and the estimated fast-rate models by
the controllability and observability approach
(dash) and the matrix roots approach (dot-
ted)

Example 2:

The experiment 2 is implemented on a pilot-scale
process in the compute process control laboratory
at the University of Alberta. It is a SISO system
with the manipulated input u as the cold water
valve position and the measured output y as the
tank water level. Both are represented by currents
(mA), which have linear relationships with the
physical units. Around an operating point u = 11

2 Data and Matlab programs are available online.
http://www.ee.ualberta.ca/∼jwang/paper.html



mA and y = 10.3 mA, a RBS input with a
limiting magnitude of 0.4 mA is designed. The
input updating period is 80 sec and the output
sampling period is 120 sec. Thus, m = 2, n = 3
and h = 40 sec, a dual configuration to Example 1.
With ‘cheap’ data acquisition, we simultaneously
measure the input and output every 40 sec, say,
uf and yf , to be used later for model validation.
Following a similar procedure as Example 1, we
choose a 2nd order fast-rate model with period 40
sec, using the matrix roots approach. To validate
the model, we take uf as the model input and
estimate the model output, which is compared
with yf in Fig. 5. The model captures the process
dynamics and steady states very well.

0 100 200 300 400 500 600 700 800 900 1000
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Measured water level and estimated water level

Data point

W
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l (

m
A

)

Fig. 5. Comparison of the measured water level
(solid) and the estimated water level (dotted)

7. CONCLUSIONS

In this paper, we studied how to estimate a fast-
rate model for a general multirate sampled-data
system under some mild conditions. The idea is
to associate the multirate sampled-data system
with an equivalent lifted system, from which the
fast-rate model is extracted. Some topics are still
open, e.g., how exactly the noise would affect
the estimation? how to get an explicit variance
expression of the estimated model? These are left
to the future investigation.
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