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Abstract: A population balance model simulates the time variations of two characteristic 
sizes of hydroquinone particles during crystallization. The population balance equations 
combined with kinetic models and mass balance equations allowed the simulation of the 
crystallization of hydroquinone characterized by a rod-like habit. Semi continuous 
isothermal operations were performed at the lab-scale in the presence of various additive 
concentrations. Both the experimental supersaturation trajectory and the final bi-
dimensional Crystals Size Distribution (CSD) were correctly predicted by the model. The 
simulated elongation factor characterizing the crystal shape was therefore in agreement 
with the experimental one. For secondary nucleation, indirect effects were assumed to 
occur and satisfactory predictions of the final number of fine particles were obtained. A 
major interest of the two-dimensional model lies in its ability to relate the time variations 
of the crystal habit : the particles lengthen in the first moments of their growth and then 
progressively get thicker until the end of the process.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
In the field of industrial crystallization most authors 
have focused their efforts on modelling one 
characteristic parameter of the particles, generally a 
given equivalent size (Franck et al., 1988; David et 
al., 1991). Nevertheless, the usual one-dimensional 
approach does not suitably describe the evolution of 
a population of anisotropic crystals, which is the 
common case with organic products. This is why a 
two dimensional population balance approach was 
presented and solved numerically (Puel et al., 
2003a), in order to simulate the time variations of 
two sizes of crystals. Actually, the industrial 
production of fine organics may lead to problems 
arising from the lack of mastery of the end-use 
properties of the crystals. These problems are due to 
the high sensitivity of the crystal habits to the effects 
of supersaturation, impurities and additives during 
the crystallization operation. It is therefore useful to 
analyse and predict the evolution of crystal habits 
during the process.  

At the solid state, hydroquinone exhibits a rod like 
habit (see Fig.1), with three main dimensions: length 
L1, width L2 and height, assumed to be equal to the 
width. An elongation shape factor, F1, is also defined 
as the length to width ratio. To take into account the 
two sizes and the shape of the crystals, two-
dimensional population balance equations are 
required. Such modelling strategy will be applied to 
determine the kinetic parameters of the 
crystallization process.  
Batch experiments have rich information contents 
and are therefore suitable for satisfactory parameter 
estimation of the nucleation and growth mechanisms. 
However the time variations of temperature require 
taking into account the temperature dependency of 
the kinetic parameters. Consequently, isothermal 
semi-batch operation appears as a good strategy to 
obtain a set of kinetic parameters since it allows 
distinguishing between the various phenomena 
occurring as a function of time. At the beginning, the 
process is dominated by primary nucleation, 
afterwards the crystal growth gets the upper hand, 

     



and secondary nucleation takes a significant part in 
the size variations when the concentration of crystals 
is sufficient. The crystallization of hydroquinone was 
therefore experi-mentally carried out in a semi-batch 
isothermal well-mixed crystallizer. In addition to 
usual kinetic investigations, the effect of various 
concentrations of a tailor-made additive was also 
studied. The semi-batch crystallization of 
hydroquinone was then simulated using a bi-
dimensional population balance approach. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 1. (a) Photographic picture of typical crystals of 
hydroquinone and (b) bi-dimensional approxi-
mation of the corresponding rod-like particles.  

 

2. EXPERIMENTAL SETUP AND OPERATING 
CONDITIONS  

 

2.1 Experimental setup 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Experimental apparatus  
 
The experimental device is shown schematically in 
Fig. 2. The crystallizer (1) is a glass reactor equipped 
with four baffles (2) and a Mixell TT propeller (3). 
The suspension is withdrawn from the vessel using 
the bottom valve (4). A constant temperature is 
maintained in the crystallizer by using a thermostatic 
bath (5) and a circulating pump (6). The coolant goes 
through a glass jacket and a jacketed cover (7). Four 
electrovalves were sequentially manipulated to 
perform the withdrawal of solution samples through 
a filter (8). Samples were diluted for titration. The 
feed tank (11) was thermostated (12), the transfer of 

the hot undersaturated solution to the crystallizer was 
carried out using a peristaltic pump (14) and jacketed 
pipes (16). The required temperature measurements 
were obtained using Pt100 probes. Nitrogen (18) was 
fed in the two vessels to prevent oxidation in 
solution. 
 

2.2 Fed-batch  isothermal crystallization experiments 
 

The crystallizer was initially filled with a saturated 
solution of hydroquinone, and kept at 25°C. During 
the first period of the semi-continuous operation (i.e. 
the first half an hour) a ‘hot’ solution was fed to the 
crystallizer. Afterwards, the suspension was kept at 
25°C, under stirring, for about 1.5 hour, in order to 
let the slurry reach the equilibrium. Samples of the 
clear liquor in the crystallizer were withdrawn every 
3 minutes. The solute concentration of these samples 
was determined through titration. The two 
dimensional crystal size distributions of final crystal 
samples were measured using image analysis.  

(b) (a) 

 

3.   EXPERIMENTAL RESULTS 
 

3.1  Supersaturation profiles 
 

The solute concentration data allowed the compu-
tation of the degree of supersaturation β,  defined as 
the ratio of the solute concentration to the solubility.  
A semi batch run (see Fig.3) consists of three phases. 
During phase 1, the solute concentration increases as 
the feeding solution presents a higher hydroquinone 
concentration. Phase 1 terminates when primary 
nucleation occurs. During phase 2 the solute concen-
tration reaches a plateau: the feeding rate of hydro-
quinone is then constant and equal to the rate of 
consumption through particles growth. Phase 3 
begins when the feeding rate falls to zero. A decrease 
of the solute concentration towards the solubility is 
then observed.  
As expected, the presented experimental data also 
show that supersaturation tends to 0 at the end of 
phase 3.  
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Fig. 3. Semi batch crystallization of hydroquinone 
Computed nucleation rates (dashed lines 1 and 2 
for rN1 and rN2); computed relative supersaturation 
σ (full line 3); measurements of the relative 
supersaturation σ (open circles) 

 

3.2  Evolution of crystals sizes and elongation factor 
 

To avoid undesirable thin needle crystal habits, a 
tailor-made additive was selected for its ability to 
reduce the growth along the length direction. The 
efficiency of such addition was clearly demonstrated 

     



as the average length decreased with the additive 
concentration. The measured coefficients of variation 
are rather large: a unique period of crystals birth (i.e. 
through primary nucleation) is not consistent with 
such wide CSD. Consequently, secondary nucleation 
phenomena have to be considered for realistic further 
simulations.  
 

 
 

Fig. 4. Semi batch crystallization of hydroquinone 
(run SC2): Comparison between computed and 
measured number CSD of final crystals (a) 
Length L1; (b) Width L2. (Dashed lines: 
Measurements using Image Analysis; Full lines: 
Computed Final CSD) 

 

Indeed, the size- and impurity-dependency of F1 
cannot be expressed by any simple and obvious 
relationship. For example, no satisfactory simulation 
of the variations of the crystal shape can be obtained 
assuming a constant elongation factor over the size 
range. Therefore, considering two dimensional 
population balances in the case of non-isotropic 
crystals presents a real interest for predictive 
modelling purposes. Obviously, the experimental 
data required for such modelling cannot be obtained 
through usual particle sizing techniques such as laser 
diffraction methods, as they only provide one 
equivalent size distribution. This is why image 
analysis was used (Fig.4) 
 

4.  ESTIMATION OF THE KINETIC 
PARAMETERS OF THE CRYSTALLIZATION 
 

4.1  Kinetic modelling of the semi batch 
crystallization of hydroquinone  
 

The main mechanisms encountered in the semi-batch 
crystallization of hydroquinone are primary and 
secondary nucleation, and growth. In the modelling 
breakage and agglomeration were assumed to be of 
second order of importance. 
A detailed model describing the crystallization of 
hydroquinone, based on bi-dimensional population 
balance equations (PBE), was developed to compute 
the time variations of L1 and L2. The CSD was 
assumed not to depend on spatial coordinates in the 
well-mixed lab-scale crystallizer. The PBEs involve 

kinetics equations relating the mechanisms of 
crystallization mentioned above and mass balance 
equations. The whole model is presented in more 
details by Puel et al. (2003a). Table 1 summarizes the 
main equations which were considered in the case of 
well-mixed crystallizers. 
A, B are primary nucleation coefficients that can be 
determined experimentally and have complex 
physical meaning (see e.g. Mersmann, 1996). kN, n, k 
are parameters for the kinetic modelling of secondary 
nucleation. kN is generally assumed to be related to 
the stirring power and to exhibit a temperature-
dependency according to Arrhenius’s law. Exponent 
n lies between 0.5 and 2.5. Exponent k is generally 
assumed to be of the order of 1 (Garside, 1985). ki,1, 
ki,2, j1 and j2 are growth parameters for the integration 
step of solute in the crystal lattice. ki,1 and ki,2 are the 
kinetic constants related to L1 and L2 directions, 
respectively, and j1 and j2  (in general 1 or 2) are the 
order of integration depending on the mechanism in 
question. kd, is a mass transfer coefficient related to 
the diffusive step of solute in the layer around the 
crystal surface. η1 and η2 are effectiveness factors for 
faces 1 and 2 allowing to calculate the real mass flux 
density integrated in the crystal with respect to the 
maximal mass flux density that would be obtained in 
the absence of diffusive limitations (Garside, 1971). 
Twelve parameters are thus involved, but the last 
three ones, which are time varying, can be calculated 
for every time step, using data available in the 
literature. Finally, nine kinetic parameters remain to 
be estimated from the experimental data through the 
fitting of the measured variables to the model-
predicted ones. 
 

4.2  Solving the bi-dimensional Population Balance 
Equations (PBE) 
 

The method of classes was used for solving the bi-
dimensional PBE, it requires the introduction of 
population number function N(L1,L2,t). The crystals 
number function is discretized over the bi-
dimensional size domain and Ni,j(t) represents the 
number of crystals belonging to the class denoted by 
Cli,j. The program calculates the relative supersa-
turation σ, the kinetic rates of nucleation rN1 and rN2 
and of growth G1 and G2 along the L1 direction, 
respectively the L2 , axes. The total number and mass 
of crystals and the bi-dimensional size distribution 
are finally computed.  
The spatial domain of crystals length and width 
(respectively L1 and L2) is first discretized and the 
smallest class of size is assumed to fit the 
characteristic nuclei represented by its two 
dimensions, L1

* and  L2
*. 

Let L1,0 ,..L1,i , …L1,im be a suite of length where L1,im 
is the length of the largest crystals. These lengths 
define im classes quoted Cl1,i, the extent of a class is 
∆Cl1,i  = L1,i – L1,i-1 and the characteristic length of 
the class is S1,i = (L1,i-1 + L1,i)/2. The same 
discretization is performed for L2. 
As Fig.5 shows, such discretization defines bidimen-
sional classes Cli,j , delimited by L1,i , L1,i-1, and L2,j, 
L2,j-1 of area Ai,j = ∆Cl1,i ∆Cl2,j . These classes are 
fixed and of constant size. The size domain is divided 

     



in a system of im by jm bi-dimensional classes. The 
method of classes also requires the introduction of 
the population number function N(L1,L2,t) defined as 
follows : 
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im by jm  number functions Ni,j(t) are thus defined. 
 

4.3 Application of the method of classes 
 

To express the population balance equations, the 
population number function N(L1,L2,t) are now used, 
rather than the population density function ψ(L1,L2,t).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
     
Fig. 5.  Bi-dimensional class Cli,j , inlet flows of 

crystal numbers f I
1,i,j ; f  I

2,i,j and outlet flows of 
crystal numbers  f O

1,i,j ;  f O
2,i,j,(t) 

 

1. The balance equation (T1) (see Table 1) is first 
discretized according to the bi-dimensional grid 
presented above (see also Fig.5): 
The PBE is integrated after combining expressions 
(2) and (T1) with  :  
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2.  The population balance around the bi-dimensional 
class Cli,j leads to a set of im by jm ordinary 
differential equations : 
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f 1,i,j(t) and f 2,i,j(t) are the net inlet and outlet flows of 
crystals in class Cli,j , in the length and width 
directions induced by growth, respectively. Each 
crystals flow being divided in inlet and outlet flows 
for each direction (see arrows on Fig.5) 
 

 f 1,i,j,(t) = f  O1,i,j,(t) – f  I1,i,j,(t)   and  
 f 2,i,j,(t) = f  O

2,i,j,(t) – f  I
2,i,j,(t)                         (5) 

Where f  O
1,i,j(t), f  O

2,i,j(t) are the outlet crystal flows 
from the Cli,j class in the L1 and L2 directions ; and 
f  I

1,i,j(t), f  I
2,i,j(t) are the inlet crystal flows from the 

Cli,j class in the L1 and L2 directions  
 

The calculation of these inlet and outlet crystal fluxes 
are carried out using a first-order Tailor series 
expansion: 
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The previous expressions are valid for 2< i < im-1 and  
2< j< jm-1. Only four neighbouring classes of Cli,j are 
considered in the design of the algorithm. Particular 
cases are considered for the classes which are set at 
the boundaries of the size domain. The lower classes 
can not accept growing crystals form the previous 
ones:  f  I

1,1,j(t)= f  I
2,i,1(t) = 0. Crystals in the upper 

classes can not grow in the next ones: f  O
1,im,j(t) = f  

O
2,i,jm(t) = 0 . Other numerical treatments are 

necessary and are reported by Puel (1994). 
 

4.4   Parameter estimation and simulation results 
 

Data were collected after six experiments which 
correspond to four concentrations of tailor-made 
additive (i.e. 0, 400, 600 and 1000 ppm).  
‘Usual’ optimisation procedures would obviously 
lead to an excessive computational time and are 
likely to converge towards local optima. The applied 
estimation strategy was therefore based on the use of 
mechanistic knowledge of the crystallization system 
to save time and to make the convergence easier. 
Such strategy was successfully applied by David et 
al. (1991), it is based on the fact that different 
mechanisms occur successively during this semi 
batch crystallization process: as outlined above there 
are 3 main periods during which each mechanism 
prevails even though until the end of the process, 
secondary nucleation should be considered as a 
potential mechanism for the generation of nuclei. In 
practice the estimation procedure is therefore driven 
as follows: 
Firstly, the exponents involved in the growth kinetic 
are arbitrarily fixed at  j1=j2=1. The CSD is computed 
and the calculated and measured mono-dimensional 
crystals distributions are compared, successively in 
the L1 and L2 directions. To stress on the bi-
dimensional information, the simulated and 
experimental elongation factor F1 are also compared. 
By this way, a precise choice of the kinetic orders n, 
k , j1 and j2 can be performed. The values of A, B, kN, 
ki,1 and ki,2 are then tuned using a trial and error 
approach based on the physical meaning of the 
parameters which have to be estimated. More details 

     



on the parameter estimation are reported by Puel et 
al. (2003b).  
Run SC4. Run SC4, carried out with 600 ppm of 
additive, was first selected. Fig. 3 presents the 
measured and calculated relative supersaturation. 
The model prediction is good until the 
supersaturation reaches the plateau, where the 
simulation underestimates the steady-state 
supersaturation. The obtained value of B is rather 
low, leading to a large burst of primary nucleation 
peak during few minutes. Actually, A and B are 
strongly linked together through the total number of 
crystals, a reduction of B leads to an increase of A. 
Nevertheless, the maximum estimated supersa-
turation value, which corresponds to the limit of the 
metastable zone, is correctly predicted. The kinetic 
coefficients and orders of secondary nucleation were 
then fitted to represent the population of fine crystals 
in the final CSD (see Fig. 4)). Again, the four kinetic 
parameters related to the two growth laws are 
strongly connected. Values 1 and 2 for the orders j1 
and j2 lead to 4 possible combinations. Setting 
j1=j2=2 or j1=j2=1 leads to underestimate, respect-
tively overestimate, the decrease of supersaturation 
after primary nucleation.  Additional information 
was then obtained from the measurements of the 
elongation factor F1, which is very sensitive to 
differences in the growth rates along the two main 
directions. Finally, setting j1=2 and j2=1 allowed the 
best prediction of the particle shape. Any other value 
of j1 and j2 leading to a maximum for F1, which was 
not experimentally observed. The growth coefficients 
ki,1 and ki,2 were finally set considering the main 
population of crystals in the final distribution (see 
Fig. 4). For the experiment in question, the length 
and width of crystals were satisfactorily predicted. 
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Fig. 6.  Semi-batch crystallization of hydroquinone 

(run SC1). Experimental and model-predicted 
evolution of the elongation shape factor F1 vs. L1 
(Average of a sample of final crystals) 

 

Runs SC1, SC2 and SC5. Some of the kinetic para-
meters estimated after run SC4 should be modified in 
order to account for the effect of the concentration of 
additive. 
The orders of the growth and secondary nucleation 
kinetic laws (n, k, j1 , j2) were unchanged since no 
modification of the two mechanisms involved was 
expected from the introduction of additive. Due to 
the chemical structure of the additive, it was also 
assumed that the growth in the L2 direction was not 
altered so that ki,2 was kept constant. Moreover the 
experiments showed that primary nucleation was 

increasingly delayed by increasing amounts of 
additive. Parameters A and B being linked each 
other, A was assumed constant and then B fitted in 
order to represent the measured maximal 
supersaturation in the neighbourhood of primary 
nucleation. The level of fine particles in the CSD and 
the final total number of crystals is dependent on the 
primary and secondary nucleations. The prediction of 
the number of crystals was achieved through the 
evaluation of appropriate values of the kinetic 
coefficients B and kN related to the law for 
nucleations. Moreover, in order to reproduce the 
reduction of the experimental elongation factor with 
increasing concentrations of additive – which, 
indeed, is the effect expected from the use of the 
selected additive – it was necessary to assess a 
decreasing relationship between the value of ki,1 and 
the concentration of additive.  
The three parameters mentioned above (i.e. B, kN and 
ki,1) were first estimated for runs SC2 (400 ppm of 
additive) and SC5 (1000 ppm of additive) by 
comparing experimental and simulation results. The 
fit obtained between experimental and simulated data 
was correct. Unfortunately, for run SC1 (0 ppm of 
additive), no supersaturation measurement was 
available. Consequently, in order to extend the set of 
kinetic parameter values, the missing parameters of 
B, kN and ki,1 were extrapolated at 0 ppm. Second 
order polynomial and linear relationships between 
the three kinetic parameters and the concentration of 
additives were established As one can see in Fig. 6, 
the simulated elongation factor for run SC1 obtained 
with the extrapolated parameters at 0 ppm was in 
good agreement with the experimental data, the 
model and the set of kinetics parameters were 
therefore considered as validated. 
 

5.    GENERAL REMARKS AND DISCUSSION 
OF THE RESULTS 

 

As far as the estimation of numerous kinetic 
parameters is involved, it is our opinion that, given 
the limited number of experimental data and the 
complexity of the crystallization phenomena, the use 
of an optimization algorithm would lead to uncertain 
parameters and finally to a poor predictive ability of 
the model. Putting physical knowledge in the 
modeling allowed more efficient and more reliable 
convergence towards a satisfactory representation of 
the semi-batch crystallization operations.  
The main originality of the present work lies in its 
two-dimensional approach for the modeling of 
particle shape, and almost no such application based 
on real experimental data can be found in the 
literature. This work is also an attempt to relate the 
effect of a specific tailor-made additive to the shape 
of hydroquinone crystal.  
Primary nucleation appears to be quite sensitive to 
the concentration of additive as the delay of nuclei 
formation increases with the additive concentration. 
The molecules of additive turn out to act as 
nucleation inhibitors, maybe by limiting the growth 
of crystal embryos. The concentration dependency of 
parameter B estimated during the present work 
relates the increase of the width of metastable zone 
associated to such inhibition effect. Secondary 

     



nucleation was taken into account to explain the 
fractions of fine crystals in the final experimental 
CSD, even though this is not the major mechanism 
for nuclei generation.  
A major impact of the additive on the crystal habit 
was also observed and simulated. The molecules of 
additive act as efficient growth inhibitors in the 
length direction so that between 0 and 1000 ppm, the 
growth rate kinetic coefficient ki,1 is divided by a 
factor of 3.2. Again, this result is consistent with 
physical considerations.  
 

6.    CONCLUSIONS 
 

A bi-dimensional population balance approach was 
developed for simulating the time variations of the 
habit of non isotropic crystals of hydroquinone 
during solution crystallizations. The algorithm 
coupled with kinetic models allowed the simulation 
of isothermal semi-batch crystallization of hydro-
quinone exhibiting a rod-like habit. Despite various 
experimental conditions, the supersaturation profiles 
were correctly predicted, and the computed final bi-
dimensional CSD and elongation shape factors fit the 
experimental data. 
An inhibition effect of a tailor made additive was 
clearly observed, and represented by the model. The 
additive mainly affects primary nucleation and the 
growth in the length direction, but secondary 
nucleation mechanisms and their inhibition in the 
presence of additive were also taken into account and 
successfully represented, allowing a good prediction 
of the final content of the slurry in fines particles.  
A set of nine kinetics parameters was estimated 
through the comparison between experimental and 
calculated data.  
 

The reported parameter values were partly validated 
trough the prediction of a semi-batch crystallization 
performed without additive. Three kinetic parameters 

were related to the concentration of additive in order 
to represent the inhibition effects of the tailor-made 
additive but, even though their physical consistency 
was justified, the obtained relationships are simply 
phenomenological.  
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