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Abstract

Feedback linearization is a nonlinear controller design
strategy that results in an explicit formulation of the
feedback control law. This method can result in excel-
lent performance if an accurate dynamic process model
is available. However, feedback linearization suffers
from a lack of robustness if plant-model mismatch ex-
ists. The approach presented in this work analyzes the
robustness properties of the closed-loop process with
specific regard to the controller tuning parameter. Due
to this, it is possible to tune the controller such that ro-
bustness over the entire operating region is guaranteed
even under the assumption of certain types of model
mismatch. This method is illustrated with an example
and conclusions about its applicability to more general
model and controller formulations are presented.

1 Introduction

Nonlinear process control has become increasingly pop-
ular in the chemical process industries. This is due
to the trend towards speciality products, tighter profit
margins, more stringent environmental requirements,
as well as advances in nonlinear systems theory and in
the numerical implementation of nonlinear controllers
(Bequette, 1991).

Feedback linearization is a nonlinear controller design
technique that can result in excellent performance if
an accurate model of the process is known. However,
the closed-loop performance can degrade significantly,
even up to the point that the process can become un-
stable, if the real model contains inaccuracies in the
parameters or includes unmodeled dynamics (Henson
and Seborg, 1991). There are several possibilities to
circumvent this:

e A simpler controller could be used. This ap-
proach can increase the robustness but will usu-
ally decrease controller performance, especially
when the operating region of the process is large.

e A robust nonlinear controller could be designed.
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However, this will result in controllers that are
even more complicated to design, implement, and
maintain than regular feedback linearizing con-
trollers.

This paper presents a different approach of dealing with
model mismatch for nonlinear controller design. The
model and its uncertainties are thoroughly analyzed by
performing bifurcation analysis on the closed-loop sys-
tem. Subsequently, the results from this analysis are
used to tune the controller. In particular, it is often
possible to tune a feedback linearizing controller such
that robust stability is guaranteed.

The procedure is illustrated using an unstable reac-
tor as an example. For this case study, uncertainty in
the model parameters will result in an upper bound on
the controller tuning parameter, while unmodeled dy-
namics will result in a lower bound. This upper and
lower bound on the tuning parameter correspond to,
roughly speaking, a lower and an upper bound on the
aggressiveness of the controller. From the bifurcation
analysis it can be inferred that the controller will guar-
antee robust stability over the entire operating region
for tuning parameter values between these bounds. In
addition to robustness, it is also possible to use these
bounds in order to achieve good performance even if
there exists mismatch between the real model and the
one that is used for designing the controller.

2 Feedback Linearization

Two main categories of designing controllers via feed-
back linearization can be identified: input-output lin-
earization and state-space linearization. The presenta-
tion in this paper will exclusively focus on the former
because it is more generally applicable and will result in
linear input-output behavior of the system if no model
mismatch is present.

Consider a single-input single-output (SISO) nonlinear
system with n states of the form

&(t) = f(2(t) + g(x(®))u(?)

y(t) = h(z(t). M



If this system has a well-defined relative degree r then
it can be transformed into normal form via a diffeomor-
phism [¢T,7T]T = &(z). The ¢ coordinates are defined
as

& = ®(z) = L 'h(z), 1<k<r (2)
and the n; = ®,4;(x),1 < j < n —r (Isidori, 1995;
Kravaris and Kantor, 1990) correspond to the internal
dynamics of the closed-loop process. The normal form
of the system is then given by

b=6&6

& =&

o 3)
& = Lih(z) + LyL} h(z)u

n=q(&n)

y=%&

The map between the input and the output can be

linearized by choosing a static state feedback control
law ,

y v — Lih(z)

LyL™'h(z)

such that the r-th equation of (3) becomes &, = v. It
is possible to place the poles of the closed-loop transfer
function for the linearized subsystem £ in the complex
plane by choosing an appropriate feedback v. For the
purpose of this paper only one tuning parameter, €,
which represents the time constant of the closed-loop
system is used to shape the closed-loop response. A
feedback linearizing controller in terms of the original
states is then given by

(4)

—ppn) = ) rtn) — - e

LyL7™ h()
+ = (ysp — M(2))
Ly L 'h(z)

u =

(5)

When this control law is applied to the process, the
closed-loop transfer function between the system out-
put y and the set point y,, becomes

Y _ % (6)
Ysp (es+1)
under the assumption that y(0) = y,,(0).
It is also possible to include integral action in the con-
troller in order to compensate for possible inaccuracies
in the model. The feedback linearizing controller with
integral action is given by

—uin) - Cpth) - = () Lnge)
LyL} 'h(z)

u =

@(ysp — h(2)) + 24 [y Wep — h(@))dr
Ly L} "h(z)

+ (7)

resulting in the closed-loop transfer function

y  (r+1es+1
Ysp  (es+1)r+t

(8)

under the condition that y(0) = y,,(0).

The transfer functions shown in equations (6) and (8)
only represent the closed-loop system behavior if the
matching conditions are satisfied up to a degree of at
least r. Since this investigation specifically focuses on
controller tuning under the influence of model mis-
match, the controller implementation shown in equa-
tion (7) will be used. Due to the model mismatch it
will not be possible to exactly achieve the closed-loop
response shown in equation (8). However, the integrat-
ing term in the controller will ensure that the desired
set point can be reached and appropriate tuning of the
controller can still result in good performance for many
cases.

For the implementation of feedback linearizing con-
trollers it is usually postulated that the internal dy-
namics of the process is stable and that the values of
the states are exactly known. While this investigation
also uses the latter assumption, it will be shown that
the validity of the former assumption can easily be an-
alyzed as part of the proposed tuning method.

3 Bifurcation Analysis

Bifurcation theory allows to systematically identify
critical points on the steady state manifold of a
parametrized ODE or DAE system. The term critical
point refers to a point at which the dynamic behavior
of the system changes qualitatively. For example, at
Hopf and saddle-node bifurcations, stable and unsta-
ble steady states meet. Therefore, stability boundaries
in the process parameter space can be investigated by
locating these critical points for the system of interest.
The use of bifurcation theory in conjunction with
parameter continuation is well established. As one-
parametric curves of steady states are calculated by
parameter continuation, critical points can be detected
by monitoring sign changes of appropriate test func-
tions (Beyn et al., 2002). Once a bifurcation point
has been detected, a curve of bifurcation points can
be calculated by continuation from this point, just as
a curve of steady states was calculated starting from
a known steady state in the first step. The sequence
of continuation, detection of critical points, and subse-
quent continuation of a critical point can be repeated
for critical points of higher order, e.g. for a cusp point
found on a curve of saddle-node bifurcations. While
many higher order critical points are related to exotic
dynamic behavior, some reveal information which can
be exploited for engineering purposes. Most notably in
the present context, sets of cusp points bound regions
of the process parameter space in which no saddle-node



bifurcations occur. Similarly, sets of a particular type
of degenerate Hopf point bound regions in which no
Hopf points occur. Since Hopf and saddle-node points
mark the stability boundary, knowledge about the lo-
cation of degenerate Hopf and cusp points will be ex-
ploited in section 4 to identify regions in which no loss
of stability can occur for any value of the parameters.
Remarkably, bifurcation analysis has rarely been ap-
plied to closed-loop processes to the authors’ knowledge
(Cibrario and Lévine, 1991; Littleboy and Smith, 1998).
The relation of the present paper to bifurcation theory-
based design methods will be briefly discussed in sec-
tion 6.

4 Robust Controller Tuning

During controller tuning a trade-off is always associated
with performance and robustness requirements. This is
due to the fact that good performance leads to aggres-
sive controllers which will usually result in a decrease
in the robustness of the closed-loop process. A balance
between these objectives has to be found. Methods for
tuning linear controllers are well established (Skogestad
and Postlethwaite, 1996) but this is not the case for
nonlinear controllers, where performance and robust-
ness cannot easily be quantified.

In the following a methodology for determining upper
and lower bounds for tuning parameters for feedback
linearizing controllers is presented. This approach is
based upon bifurcation analysis of the closed-loop sys-
tem. The method will be illustrated by an example and
a generalization of this tuning method is discussed in
the next section.

Consider a continuous stirred tank reactor (CSTR) for
an exothermic, irreversible reaction, A — B (Uppal et
al., 1974). Assuming constant liquid volume, the fol-
lowing dynamic model can be derived based upon a
component and an energy balance:

v _ 4 — ) — _E
CA—V(CAf Ca) koeXp( RT)CA 9)
. g AH E
T=2(T;-T)- == -
v Tr-1) pcpkoexP( RT) Ca
UA

* VpCp

(T.—T) (10)

The values of the parameters and the nominal operat-
ing conditions for this process are shown in Table 1.
The temperature of the cooling fluid, 7., can be ma-
nipulated and the reactor temperature, 7', is measured.
This results in a system consisting of two states with
a single input and a single output. The bifurcation
diagram of the open-loop system is shown in Figure
1. The equilibria of the system consist of two stable
branches and one unstable branch connecting the two

Variable Value Variable Value
q 100-L- £ 8750K
Cay 1mol ko 7.2-100_L
Ty 350K UA 5-10" 2~
v 100L T. 300K
p 10004 Ca 0.5
Cp 0.239-% T 350K
g
AH | -5-10"_L

Table 1: Parameters for the CSTR

stable ones. The system also has two limits points and
one Hopf point. The nominal operating point shown in
Table 1 lies on the open-loop unstable branch. When a
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Figure 1: Bifurcation diagram of the open-loop system.

controller like the one given by equation (7) is designed
for this process it results in the following feedback con-
trol law

—& (Ty = T) + S koexp (—77) Ca + 55T

— VpCyp
- UA
VpCp
2(Tyy —T) + % [ (Tyy — T) dr
LTy T4 Ty ar
VpCp
T.=u (12)

Assuming that there is no mismatch between the plant
and the model, the controller of the form of equation
(11) results in a system that has a stable input-output
behavior as well as a stable internal dynamics for any
value of € and any set point, T, within the operating
region. This can easily be verified by applying bifurca-
tion analysis to the closed-loop system. For this nom-
inal case the value of € can be made arbitrarily small,
resulting in a very fast response. However, in an on-line
application there is always some mismatch between the
plant and the model which can also lead to restrictions
for the controller tuning.

Assume that the heat transfer coefficient, U A, of the



real plant represented by equation (10) is not identical
to the one for the model shown in equation (11) due to
uncertainty in this parameter. For the plant a value of
UA equal to 5-104 - Z{L % is used whereas for the model
a value of 5.5 - 10% mi{LK is assumed. When bifurca-
tion analysis of this closed-loop system is performed,
it is found that the system can become unstable for
high values of € because there is a Hopf point along the
equilibrium curve for some values of Ts,. Starting from
this Hopf point, a Hopf curve can be computed where
both € and Ty, are varied. The curve shown in Figure
2 results from this where the shaded region is unstable
and the region outside of the Hopf curve corresponds
to stable steady states. It can be concluded that the
system will always be stable if € is smaller than a cer-
tain value corresponding to the peak of the Hopf curve.

Next, it was investigated how this peak moves with
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Figure 2: Hopf curve of the closed-loop system for model
mismatch in UA of 10%.

variations in the parameter uncertainty. This way it
can be established how much the controller can be de-
tuned without losing stability for a specific uncertainty
in the model parameter. The corresponding curve is
shown in Figure 3. This curve provides information
about how large € can be chosen for a certain mismatch
in the model parameter in order to guarantee robust
stability. If the model mismatch is less than what was
assumed for the controller design then the closed-loop
system will also be stable. It should be pointed out that
values of € that are close to the critical € will usually
result in low performance of the closed-loop system.
When the model parameter UA is chosen to be less
than the real value of the plant (UA = 5-10*—L-)
then this model mismatch has a stabilizing effect. For
such a case any value of € will result in a stable closed-
loop system.

Similar investigations have been performed for mis-
match in other model parameters (ko, %) All of these
lead to similar conclusions that there exists an up-
per bound for the value of € for some form of model
mismatch. Tuning the controller more aggressively by
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Figure 3: ¢ vs. UA along the peak of the Hopf curve.

choosing a smaller value of € than this bound will guar-
antee robustness against parameter uncertainty for the
investigated case over the entire operating region.
Another form of model mismatch that needs to be con-
sidered is unmodeled dynamics. Since no model can
describe every detail of a process with perfect precision,
it is commonly assumed that the fast dynamics of the
process can be neglected. While this is generally a good
assumption, it does lead to a bound on the achievable
closed-loop performance. For linear controllers the un-
certainty can be described in the frequency domain and
unmodeled dynamics will result in a large uncertainty
weight at high frequencies (Skogestad and Postleth-
waite, 1996). Unfortunately, such a characterization of
the uncertainty is not possible for nonlinear systems.
However, bifurcation analysis can be performed on a
system that contains the most important part of the
fast dynamics while a controller that has no knowledge
about this dynamics is used to control it. For this case
study, the plant model is augmented by the following
two equations that describe the actuator dynamics as
an overdamped second order process

€T, =-T.+ 2

€&z =—2z+u

(13)

where €, corresponds to the time constant of the cool-
ing system. The equations in (13) replace the original
equation (12) for the following investigation. The goal
is to tune the controller such that robust stability is
guaranteed for this form of model mismatch.

Investigation of the closed-loop system under the as-
sumption of unmodeled dynamics given by equation
(13) (e, = 0.02min) but no parametric uncertainty
shows that the system exhibits a Hopf point when T,
is held constant and e is varied. Computing the Hopf
curve by starting from the Hopf point and varying both
T,p and € results in the curve shown in Figure 4. This
figure reveals that the unmodeled dynamics results in a
lower bound on the controller tuning parameter, €, for
any fixed value of T%,. Since the curve shown in Figure



4 has a peak at about € = 0.055 min, robust stability
can be guaranteed for any T, by setting € > 0.055 min.
Figure 5 shows how the peak on the Hopf curve moves
with a variation of the time constant of the unmodeled
dynamics, €,. If € is chosen to be greater than a certain
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Figure 4: Hopf curve of the closed-loop system for un-
modeled dynamics with ¢, = 0.02min.

value for a specific €,, then the system will be stable
over the entire operating region. It can also be con-
cluded that the closed-loop system will be stable for
any value of €, that is smaller than the one that was
used for the design. In summary, there are upper and
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Figure 5: € vs. €, along the peak of the Hopf curve.

lower bounds for the controller tuning parameter e for
this case study. The upper bound results from uncer-
tainty in the model parameters while the lower bound
is caused by unmodeled dynamics.

In a final step, the effect of parameter uncertainties
on the location of the lower bound for € and the effect
of unmodeled dynamics on the location of the upper
bound for € are investigated. The existence of unmod-
eled dynamics has a very mild stabilizing effect on the
system for high values of € because the unstable region
shown in Figure 2 is moved further to the right when
the value of €, is increased. A similar effect is taking

place for the lower bound of € when U A for the model
is chosen to be larger than the parameter in the model
because this will move the unstable region in Figure 4
further to the left. However, if the value of UA in the
model underestimates the real value of the parameter
then the unstable region in Figure 4 will move slightly
to the right.

Summarizing, it can be stated that the value of the
controller tuning parameter € for the worst case sce-
nario of 1) uncertainty in the parameter UA of up to
+10% 2) unmodeled dynamics of the form of equation
(13) with €, < 0.02min can be determined from the
diagram shown in Figure 6. Any value of € between
the peak values of 0.059424 min and 7.1969 min will re-
sult in robust stability of the closed-loop system over
the entire operating region and for any plant model
mismatch as described. In order to achieve good per-
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Figure 6: Regions of stability based upon the controller
tuning parameter e.

formance in addition to robustness it is recommended
to use a value of € that does not lie directly on the
stability boundary (e.g. € = 0.25 min for this case). If
there is a gap of several orders of magnitude between
the smallest and the largest value of the tuning param-
eter then it is recommended to stay closer to the lower
value in order to achieve a faster response. Ultimately,
the dynamics of the open-loop process has also to be
considered for tuning the controller.

All of the results derived from bifurcation analysis have
been confirmed in simulations with the dynamic sys-
tem.

5 Controller Tuning Procedure

The previous section illustrated the controller tuning
method by applying it to a specific example. However,
the same tuning method can be applied to processes in
general. It contains no restriction about the process to
be controlled or the type of controller to be tuned.

For feedback linearizing controllers the following steps
should be included in the controller tuning process:

1. Design and implement the controller on the sim-
ulated process.

2. Analyze the internal dynamics of the closed-loop



system using bifurcation analysis. This should be
performed at the operating point as well as over
the entire operating region in order to determine
if the internal dynamics will remain stable over
this region.

3. Tune the controller to satisfy a nominal perfor-
mance requirement. This is trivial to do for the
nominal case because the input-output behavior
of the closed-loop process corresponds to equa-
tion (6) or (8) if a controller of the type of equa-
tion (5) or (7) is being used.

4. Identify the main sources of parametric uncer-
tainty in the model. Subsequently, analyze the
closed-loop system using bifurcation analysis un-
der the assumption of parametric uncertainty.
This can result in restrictions on the controller
tuning parameters.

5. Perform bifurcation analysis on the closed-loop
system under the assumption of unmodeled dy-
namics. This investigation might place further
bounds on the controller tuning parameters.

6. Investigate the region for the controller tuning
parameters for which the closed-loop system re-
mains stable under the worst possible combina-
tion of parametric uncertainty and unmodeled
dynamics over the entire operating region. This
is an important point in order to guarantee ro-
bust stability of the controller.

7. If the controller tuning parameters that satisfy
the nominal performance requirement can also
guarantee robust stability then they can be kept.
Otherwise, the controller has to be retuned in or-
der to guarantee robust stability. It should be
pointed out that it is desirable to use controller
tuning parameters that do not lie close to a re-
gion of instability of the closed-loop process in
order to also achieve good robust performance.

It is stressed that step 6 of the above procedure cor-
responds to an analysis of cusp and degenerate Hopf
points involving more than two parameters. Figure
6, for example, was obtained by locating a degenerate
Hopf point from Figure 4 and Figure 2 in three param-
eters by repeatedly calculating curves in two parame-
ters for a variety of fixed values of the third parameter.
Repeated calculation of curves in two parameters will
become tedious if extremal points must be found w.r.t.
more than three parameters. It is worth noting that bi-
furcation theory-based design methods (Mo6nnigmann
and Marquardt, 2002) are available which can deal with
a larger number of parameters than bifurcation analy-
sis.

Following these steps will result in a controller that
is tuned such that it meets nominal stability, nominal
performance, as well as robust stability requirements.

6 Conclusions

This paper presented a controller tuning strategy for
nonlinear systems. The method is based upon apply-
ing bifurcation analysis to the closed-loop system in or-
der to determine regions of stability for the controller
tuning parameters. It is often possible to tune the con-
troller such that it meets nominal performance as well
as robust stability requirements. This approach was il-
lustrated by tuning a feedback linearizing controller for
an unstable nonlinear plant, under the assumption of
parametric uncertainty as well as unmodeled dynamics.
However, the approach as such can also be applied to
different types of controllers, plants with different char-
acteristics, as well as under the assumption of different
types of plant-model mismatch.
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