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Abstract: In this paper, we consider a new filtering problem for linear uncertain
discrete-time stochastic systems with missing measurements. The parameter uncer-
tainties are allowed to be norm-bounded and enter into the state matrix. The system
measurements may be unavailable (i.e., missing data) at any sample time, and the
probability of the occurrence of missing data is assumed to be known. The purpose
of this problem is to design a linear filter such that, for all admissible parameter
uncertainties and all possible incomplete observations, the error state of the filtering
process is mean square bounded, and the steady-state variance of the estimation error
of each state is not more than the individual prescribed upper bound. It is shown that,
the addressed filtering problem can effectively be solved in terms of the solutions of a
couple of algebraic Riccati-like inequalities or linear matrix inequalities. The explicit
expression of the desired robust filters is parameterized, and an illustrative numerical
example is provided to demonstrate the usefulness and flexibility of the proposed
design approach. Copyright © 2003 IFAC
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1. INTRODUCTION

The well-known Kalman filtering is one of the
most successful H, filtering approaches widely
used in various fields of signal processing and con-
trol. However, it has now been recognized that the
standard Kalman filtering algorithm will gener-
ally not guarantee satisfactory performance when
there exist parameter uncertainties in the system
model. To improve the robustness, in recent years,
many alternative design methods have been de-
veloped, among them we just mention the H
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filtering and robust filtering approaches, see for
example Fu, et al., 2001, Palhares, et al., 2001,
Shaked, et al., 2001, and references therein.

In practical engineering, however, it is often the
case that, for a class of filtering problems such
as the tracking of a maneuvering target, the per-
formance objectives are naturally described as the
upper bounds on the error variances of estimation,
see e.g. Skelton and Iwasaki (1993) and Yaz and
Skelton (1991). Unfortunately, it is usually diffi-
cult to utilize traditional methods to deal with
this class of constrained variance filtering prob-
lems. For instance, the theory of weighted least-
squares estimation minimizes a weighted scalar
sum of the error variances of the state estima-
tion, but minimizing a scalar sum does not ensure



that the multiple variance requirements will be
satisfied (Stengel, 1986). Motivated by this fact,
a novel filtering method, namely, error covari-
ance assignment (ECA) theory (see e.g. NaNacara
and Yaz, 1997 and Yaz and Skelton, 1991), was
developed to provide a closed form solution for
directly assigning the specified steady-state esti-
mation error covariance. Subsequently, the idea
of ECA theory has been applied in investigating
the so-called variance-constrained filtering prob-
lems for parameter uncertain systems (Wang and
Huang, 2000), sampled-data systems (Wang, et
al. 2001), and bilinear systems (Wang and Qiao,
2001), where a prespecified upper bound is placed
onto the steady-state estimation error variance.

So far, in the literature mentioned above, it is
assumed that the measurements always contain
the signal. However, in practical applications such
as target tracking, there may be a nonzero proba-
bility that any observation consists of noise alone
if the target is absent, i.e., the measurements are
not consecutive but contain missing observations.
The missing observations are caused by a variety
of reasons, e.g., the high maneuverability of the
tracked target, a certain failure in the measure-
ment, intermittent sensor failures, accidental loss
of some collected data, or some of the data may be
jammed or coming from a high noise environment,
etc., see Rosen and Porat (1989).

Basically, the standard definition of covariance in
the data statistical analysis does not directly ap-
ply if some of the measurements are unavailable.
Thus, the popular robust and/or H filtering ap-
proaches, which are dependent on the system out-
put covariance, do not suit the case when there are
missing measurements. For filtering problem, only
a very limited number of filter design methods
for system output signals with missing measure-
ments have been developed. In Kassel and Baxa
(1988), the effect of missing data on the steady-
state performance of a tracking filter was shown
to be crucial. Chen (1990) proposed a suboptimal
Kalman filtering method to cope with the case of
measurement data missing. A measurement model
with a binary multiplicative noise was employed
in NaNacara and Yaz (1997) to study the filter
design problem with error covariance assignment.
Some more relevant references can also be found in
Chow and Birkemeier (1990) and NaNacara and
Yaz (1997). Up to now, to the best of the authors’
knowledge, the issue of variance-constrained filter-
ing on parameter uncertain systems with missing
measurements has not been fully investigated and
remains to be important and challenging.

In this paper, we are concerned with the variance-
constrained filtering problem for uncertain discrete-
time stochastic systems with probabilistic missing
measurements. We aim at designing a linear filter

such that, for all admissible parameter uncertain-
ties and all possible incomplete observations, 1)
the error state of the filtering process is mean
square bounded; and 2) the steady-state variance
of the estimation error of each state is not more
than the individual prescribed upper bound. It is
shown that, the solution to the addressed filtering
problem is related to a couple of algebraic Riccati-
like inequalities or linear matrix inequalities. The
explicit expression of the desired robust filters is
derived, and a numerical example is offered to
illustrate the usefulness of the proposed design
approach.

Notation. The notations in this paper are quite
standard. R” and R"*™ denote, respectively, the
n dimensional Euclidean space and the set of all
n X m real matrices. The superscript “T” denotes
the transpose and the notation X > Y (respec-
tively, X > V) where X and Y are symmetric
matrices, means that X — Y is positive semi-
definite (respectively, positive definite). I is the
identity matrix with compatible dimension. Let
(Q, F,{Fi}t>0, P) be a complete probability space
with a filtration {F;}+>0 satisfying the usual con-
ditions (i.e., the filtration contains all P-null sets
and is right continuous). £{-} stands for the math-
ematical expectation operator with respect to the
given probability measure P. Prob{-} means the
occurrence probability of the event “-”.

2. PROBLEM FORMULATION AND
ASSUMPTIONS

Consider the following linear uncertain discrete-
time stochastic system

z(k+1)=(A+ AA)z(k) + w(k), (1)
and the measurement equation
y(k) = v(k)Cx(k) + v(k) (2)

where z € R" is a state vector, y € RP is a
measured output vector, and A and C are known
constant matrices. w(k) € R* and v(k) € RP are
mutually uncorrelated zero mean Gaussian white
noise sequences with respective covariances W >
0 and V > 0. The initial state 2(0) has the mean
Z(0) and covariance P(0), and is uncorrelated
with both w(k) and v(k). AA is a real-valued
perturbation matrix being of the following form

AA=MFN, FF'<I (3)

and M and N are known constant matrices of
appropriate dimensions which specify how the
elements of the nominal matrix A are affected by
the uncertain parameters in F'. The uncertainties
in AA are said to be admissible if (3) holds.
The stochastic variable v(k) € R is a Bernoulli
distributed white sequence taking values on 0 and
1 with



Prob{y(k) = 1} = &{y(k)} :=7 (4)
where ¥ is a known positive constant, and (k) €
R is assumed to be independent of w(k), v(k), and
x(0). Therefore, we have

Prob{y(k) =0} =1-7% ()

oy =E{(y(k) =N r=01-97 (6

Remark 1. The system measurement mode (2)
has subsequently been used in many papers (see
e.g. NaNacara and Yaz, 1997) to account for the
probabilistic measurement missing.

Assumption 1. The matrix A is nonsingular and
Schur stable (i.e., all eigenvalues of A are located
within the unit circle in the complex plane).

Introducing now a new stochastic sequence

Y(k) :=~(k) =7, (7)
we can see that 7(k) is a scalar zero mean stochas-
tic sequence with variance

=(1=-y7. (8)

The linear full-order filter considered in this paper
is of the following structure

#(k+1) = Gi(k) + K(y(k) —3Cz(k)) 9)

where (k) stands for the state estimate, and G
and K are the filter parameters to be scheduled.

The steady-state estimation error covariance is
defined by

P = lim P(k) :== Jim Ele(k)el (k)],  (10)
where e(k) = z(k) — Z(k).
From (1)-(2), (7) and (9), we have y(k)—7Cz (k) =
J(k)Cz(k) + 3Ce(k) + v(k), and subsequently
e(k+1)=(A+AA -G —-3(k)KC)x(k)
+ (G —3KC)e(k) + w(k) — Kv(k).
(11)
Define zy (k) := [27 (k) eT(k)]T, and
A 0
Ap= [A—G—’y(k)KC G—'yKC] - (12)
A 0 0 O
An = [A—G G—'yKC] » I [ach 0]
(13)
Mf:: [%], Nf —[N 0] AAf:MfFNf,
(14)
Wy = BB} := [g W+II/{VVKT} o (15)
X(k) 1= E[es (k)T (k)] = [ Z }
(16)

Considering (1) and (11), we obtain the following

augmented system
wp(k+1) = (Af + AAp)z (k) + Bws(k), (17)

where wy (k) denotes a zero mean Gaussian white
noise sequence with unity intensity I > 0.

Remark 2. It is mentionable that there is a
stochastic variable 4(k) involved in Ay, which
reflects the characteristic of the missing measure-
ment for the addressed filtering problem, and the
augmented system (17) is therefore essentially a
stochastic parameter system. Note that robust
filtering problem for stochastic parameter systems
has not gain much attention in the literature.

Using the statistics of the noises w(k), v(k) and, in
particular, (k), the state covariance X (k) defined
in (16) is found to satisfy

X(k+1)=(A, + AA)X (k) (A, + AApT
+ IX(k)JT + W, (18)

We know from Agniel and Jury (1971) and
DeKoning (1984) that, if the state of the system
(17) is mean square bounded, the steady-state
covariance X of the system (17) defined by

= lim X (k) (19)

k—o0

exists and satisfies the following discrete-time
modified Lyapunov equation

X =(A, + AA)X (A, + AAp)T
+JXJT + Wy (20)

Remark 3. Tt follows from Agniel and Jury (1971)
and DeKoning (1984) that, there exists a unique
symmetric positive semi-definite solution to (20)
if and only if

p{(An +AAp) @ (An + AAp) +J®J} <1 (21)

where p is the spectral radius and ® is the
Kronecker product. Furthermore, we also know
from Agniel and Jury (1971) and DeKoning (1984)
that the condition (21) is equivalent to the mean
square boundedness of the state of the system
(17). Hence, we conclude here that, if there exists
a positive definite solution to the equation (20),
then (21) holds, and the convergence of X (k) in
(16) will be guaranteed to a constant value X.

The purpose of this paper is to design the filter
parameters, G and K, such that for all admissible
perturbations AA, 1) the state of the augmented
system (17) is mean square bounded, i.e., (21)
holds; and 2) the steady-state error covariance X,
satisfies

[Xee]ii S 042
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i=1,2,-,n. (22)



where [X,..];; means the steady-state variance of
the ith error state, and o? (i = 1,2,---,n) de-
notes the prespecified steady-state error estima-
tion variance constraint on the ith state.

In the next section, we will first characterize an
upper bound on the steady-state error covariance
X satisfying (20) in terms of some free param-
eters, and let this upper bound meet the pre-
specified variance constraints, and then we will
parameterize all desired filter gains with which the
resulting steady-state error covariance is not more
than the obtained upper bound.

3. MAIN RESULTS AND PROOFS

Lemma 1. Let a positive scalar ¢ > 0 and a
positive definite matrix ¢y > 0 be such that
NfoNJT <el,and AAy = MyFNy with FFT <
I. Then

(An +AAf)Qs(An + AAp)T
< An(Q7' —e "N Ny AT +eMeMT (23)

holds for all admissible perturbations AA.

Lemma 2. (Wang and Huang, 2000) For a given
negative definite matrix IT < 0 (IT € R**"), there
always exists a matrix L € R"™? (p < n) such
that IT + LLT < 0.

Lemma 3. (Matrix Inverse Lemma) Let A, B, C
and D be given matrices of appropriate dimen-
sion with A, D, and D~! + CA~'B being invert-
ible, then (A + BDC)™! = A=! — A='B(D7! +
CA'B)"1CcA 1.

Lemma 4. (Schur complement) Given constant

matrices 4y, Qs, Q3 where y = QlT and 0 <
Oy = Qg, then Qq + Qgﬂ;lﬂg < 0 if and only if

Q0 of } [—Qz 93}
<0, <0.
[93 —Q ol al o

For presentation convenience, we denote:

P:=(A-G) (P ' - 'NTN) 4 -G)T

+eMMT + W, (24)
R:=(¥*+02)CPCT +V, (25)
M:=®+GPGT — P

- 3¥GP,CTR1CPGT, (26)

where 7 and o5 are defined in (4) and (8), respec-
tively.

Theorem 1. Assume that there exists a positive
scalar ¢ > 0 such that the following two quadratic
matrix inequalities

AP AT — P, + APLNT(eI = NPNT)"INP AT

+eMMT +W <0 (27)
H=%+GPGT - P,
- 3GP,CTR'CP,GT <0 (28)

respectively have positive definite solutions P; >
0 (NP.NT <¢l) and P, > 0, where

G=A+EMMT +W)(A™HT
(Pt =& 'NTN). (29)
Moreover, let L € R**P (p < n) be an arbitrary
matrix satisfying 1T + LLT < 0 (see Lemma 2),
and U € RP*P be an arbitrary orthogonal matrix

(i.e., UUT = I). Then, the filter (9) with the
parameters determined by (29) and

K =3GP,CTR™ + LUR™'/?, (30)

will be such that, for all admissible perturbations
AA, 1) the state of the augmented system (17)
is mean square bounded; 2) the steady-state error
covariance X, meets X, < P.

Proof: Define Py := diag(Py, P»). Then, it follows
directly from Lemma 1 and the definitions (24)-
(26) that
(A + AAf)Pp(An + AA))T — Py + TP T
+ Wy < Ap (Pt —e 'NfNy)T AT 4 eMpM T
—Pp+ JPp T + Wy =0 = [‘I’% ‘I’”} (31)
iy Uy

where

Uy =APT - INTN)1AT — Py

+eMMT +W, (32)
Uy = AP —c 'INTN) Y4 -G)T
+eMMT +W, (33)

Uy =(A-G)(P; ' = 'NTN) ' A -)T
+ (G —3KC)P, (G —3KC)T
+eMM" — P, + 02 KCP,CTK"
+W+ KVKT. (34)

It follows immediately from Lemma 3 that

(Pt —e INTN)!
=P, + P NT(eI — NPNT)"INP,
and therefore the inequality (27) implies that

Wy < 0. Moreover, substituting the expression
of G in (29) into (33) leads to W15 = 0 easily.

Next, we shall consider Wy5. By using the defini-
tions (24)-(26), we can rearrange (34) as follows



Uy =® + (G —7KC)P(G —3KC)T — Py
+0?KCP,CTK" + KVK”
=®+GPG" — P+ K[’ +02)CPCT
+VIKT —3GP,CTKT — 3KCP,GT
=34+ GRGT — P, —3°GP,CTRT'CPR,GT
+ (KRY? —5GP,CTR™/?)
. (KR1/2 _ "yGPQCTRfl/Q)T
=11+ (KR'? —3GP,CTR™'/?)
-(KR'Y? —3GP,CTRY/%T, (35)

Noticing the expression of K = yGP,CTR™' +
LUR™'/? in (30) and the fact that UUT = I, we
have

(KR'? —53GP,CTR™'/?)
(KRY? —3GP,CTR™Y*)T = LLT.

Thus, it follows from (35), the definition of the
matrix L (L € R"*?) and the inequality (28) that
Wy =T+ LLT < 0.

To this end, we can conclude that ¥ < 0. There-
fore, it follows from (31) that

(A + AAp)Pp(An + AA)T — Py + TP T
<-Wr+¥<0 (36)

which leads to (21). As discussed earlier Remark
3, we know that the state of the augmented system
(17) is mean square bounded, and there exists a
symmetric positive semi-definite solution to (20).
The first claim of this theorem is then proved.

Furthermore, subtract (20) from (36) to give
(An + AAL)(Py = X)(An + Adf)T — (Py - X)
+J(P; — X)J' <¥ <0 (37)

which indicates again from Remark 3 that P; —
X > 0 and therefore

Xee = [X]o2 < [Pyl = P
This completes the proof of this theorem.

Remark 4. It is clear from Theorem 1 that, if
the quadratic matrix inequalities (27)(28) respec-
tively have positive definite solutions P, > 0,
P, > 0, and P, > 0 satisfies

[PQ]iiSazQ'a 221527 ) (38)

then the filter (9) determined by (29)-(30) will be
such that: 1) the state of the augmented system
(17) is mean square bounded; and 2) [Xec|s <
[P2)ii <a?,i=1,2,--- n. Hence, the design ob-
jective of variance-constrained robust filter with
missing measurements will be accomplished. Note
that the existence of a positive definite solution
to (27) implies the asymptotical Schur stability of
system matrix A, and the nonsingularity of A is
required in the expression (29). This means, the
Assumption 1 should hold.

We now briefly discuss the solvability of the
quadratic matrix inequalities (27)-(28). By using
the Schur Lemma (Lemma 4), we can transform
(27) into the following linear matrix inequality
(LMI):

APAT — P+ eMMT + W
NP AT

AP NT
—el + NPNT
(39)
The inequality (39), together with the inequality
constraint

<0

—el+ NP NT <0, (40)

are both linear on ¢ > 0 and P; > 0. There-
fore, we can employ the standard LMI techniques
in Gahinet et al. (1995) to check the solvabil-
ity of the original matrix inequality (27). After
Py is obtained, the inequality (28) becomes a
standard Riccati-like matrix inequality, which is
easy to solve. It is mentionable that, in the past
decade, linear matrix inequalities (LMIs) have
gained much attention for their computational
tractability and usefulness in signal processing
and control engineering Gahinet et al. (1995).

Remark 5. A typical feature of the present pa-
rameterization design approach is that, there ex-
ists much explicit freedom, such as the choices
of the free parameters L (L € R"*P satisfies
I+ LLT < 0), the orthogonal matrix U € RP*P
etc. This makes it possible that more performance
constraints (e.g., the transient requirement and
reliability behavior on the filtering process) could
be taken into account within the same framework.

As a summary, we give our main results as follows.

Corollary 1. If there exist a positive scalar € > 0
and two positive definite matrices Py > 0, P, >
0 such that the LMIs (39)(40) and the matrix
Riccati inequality (28) hold, and P» > 0 satisfies
[P2)ii < a? (i = 1,2,---,n.), then the filter (9)
determined by (29)-(30) will achieve the desired
robust filtering performance for uncertain systems
with missing measurements.

4. A NUMERICAL EXAMPLE

Consider the linear uncertain discrete-time stochas-
tic system (1)-(2) with parameters given by

=325 o= [32)

0.1 —0.5 01
0.1 0.05 0.1 0
M_[—O.OQ 0.8]’ N‘[o 0.1}’
0.1 0 0.5 0
W‘[o 0.1}’ V‘[o 0.5}'

and the probability for complete observation is
assumed to be 0.9.



The purpose of this example is to design the filter
parameters, G and K, such that for all admissible
perturbations AA, the augmented system (17) is
mean square bounded, and the steady-state error
covariance X, satisfies

[Xee]ll S 081 [Xee]22 S 4
Solving the LMIs (39)-(40) for €, P;, and then
the Riccati-like matrix inequality (28) for P, we
obtain

5.8346 0.0064
e =1.8286, P, = [0_0064 3.6628} ’

p, _ [ 0.7765 0.0052
27 10.0052 3.6983 |’

One of the filter parameters, G, is calculated from
(29) as follows:

= 0.5437 0.0768
~10.2040 —1.1470 | -

To obtain another parameter, K, we choose L =
0.5I, such that II + LLT < 0 and select the
orthogonal matrix U as I5. Then, it follows from
(30) that

K= [0.8040 0.0725 } .

0.1246 —0.8165

Alternatively, to show the design flexibility, we
choose U as —I,, and subsequently have

—0.1346 0.0732 }

K= [ 0.1253 —1.3490

5. CONCLUSIONS

In this paper, the linear filtering problem has been
considered for parameter uncertain discrete-time
stochastic systems where there is a nonzero prob-
ability of signal being absent in the measurement.
This problem has been approached by assigning
an upper bound to the steady-state error covari-
ance, and by parameterizing the set of all filter
gains that could achieve such an upper bound.
It has been shown that, the problem is solvable
if several linear matrix inequalities or Riccati-
like matrix inequalities have positive definite so-
lutions. In particular, the characterization of the
desired filter gains has been given in terms of some
‘free’ parameters, and much design flexibility have
been offered, which could be utilized to achieve
more expected performance requirements. An nu-
merical example has been provided to illustrate
the effectiveness of the proposed design approach.
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