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Abstract: Current energy market trends incentivize frequent optimal load changes, including
the startup of cryogenic air separation units (ASUs), which are large electricity consumers. In
this study, we assess the potential benefits of using an economic nonlinear model predictive
control (ENMPC) framework for the optimal startup of ASUs in the presence of a measured
process disturbance. We also considered strategies for improving the solution computational
speed of the ENMPC problem. Our case study shows substantial profit recovery by the control
strategy relative to offline pre-computed optimal inputs in response to the disturbance.
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1. INTRODUCTION

Cryogenic air separation units (ASUs) are energy-intensive
and produce some combination of high-purity liquid and
gaseous products of nitrogen, oxygen, and argon from
air using distillation processes. The products from ASUs
find uses in various sectors, including steel manufacturing,
semiconductor production, refining, pharmaceuticals, and
aeronautical applications. Air being the only feed to the
process, the operating cost of ASUs is mostly electricity
due to multi-stage compression.

In the current volatile electricity market, an economi-
cally advantageous strategy for ASUs may be to shut
down during periods of high electricity pricing, especially
if the startup operation is fast or economically optimal
(Miller et al., 2008a). Such a strategy would result in
more startups than before. Meanwhile, the status quo of
industrial startup of ASUs is limited automation (Caspari
et al., 2020), long startup time (a few hours to a day
(Miller et al., 2008b)), and limited revenue generation,
motivating the study of ASU startups. The startup phase
presents complex challenges due to the intricate interplay
of thermodynamics, process dynamics, and discontinuous
behavior. Although ASUs vary in size: from the single-
column nitrogen plant to the multiproduct ASU with
four distillation columns, they all share the aforemen-
tioned complexities. As such, much effort in the litera-
ture on ASU startup has been directed toward modeling
and dynamic simulation of the startup operation. Miller
et al. (2008b) present a dynamic simulation study of
the multiproduct ASU, in which startup discontinuities
are captured using nonsmooth formulations. The result-
ing high-fidelity model demonstrates the startup time re-
duction potential of reintroducing liquid collected from
shutdown. Contributions by Kender et al. (2019, 2021)
focused on startup model development for double-column
and multiproduct ASUs using a pressure-driven approach.

1 Corresponding author (e-mail: swartzc@mcmaster.ca)

The digital twin obtained simulates the entire operating
range of the ASU, from warm startup (startup operation
initialized at ambient temperatures instead of cryogenic
temperatures) to shutdown, and is used to perform hazard
analysis. More recently, Caspari et al. (2020) and Quarshie
et al. (2023b) presented dynamic optimization (DO) stud-
ies on a nitrogen plant with startup discontinuities mod-
eled using a smoothed Fischer-Burmister formulation, and
the multiproduct ASU with discontinuities modeled using
smooth sigmoidal functions, respectively. Both studies use
a quadratic target-tracking objective function, which min-
imizes deviation from targets, such as product flows from
their steady-state values. In a subsequent contribution by
Quarshie et al. (2023a), readily interpretable metrics such
as startup time and profit are used as objective functions
in the DO of the multiproduct ASU startup.

This study builds on the work of Quarshie et al. (2023a).
While quantifiable improvements in time and profits have
been demonstrated using offline open-loop control strate-
gies, these gains may not be fully realized due to model
uncertainty and disturbances. As shown by Schäfer et al.
(2019), feedback control through a sub-optimal ENMPC
offers superior performance in uncertainty mitigation rela-
tive to an offline open-loop control strategy for a nitrogen
plant. As such, the main objective of this study is to
evaluate the potential benefit of ENMPC for ASU startups
in the presence of disturbances. The evaluation uses a
startup model of the nitrogen plant developed using for-
mulations presented in our earlier contribution (Quarshie
et al., 2023b). We use an ENMPC formulation for which
we apply the so-called shift initialization strategy (Diehl
et al., 2009) for rolling horizon formulations for improved
computational performance.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the nitrogen plant and summarizes the
corresponding startup model used in this study. We then
provide details on our formulation and implementation in
Section 3. Assessment of the formulation and implementa-
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tion through the case study is presented in Section 4, and
we recap key aspects of our study and provide directions
for future research in Section 5.

2. STARTUP MODEL DESCRIPTION

2.1 Nitrogen plant process description

Figure 1 represents the nitrogen plant. The process begins
with the compression of filtered air before the cooling and
removal of water-soluble impurities and other impurities,
such as hydrocarbons, in the molecular sieve units.
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Fig. 1. Process diagram for a cryogenic air separation plant
that produces gaseous and liquid nitrogen (Adapted
from Cao et al. (2016b) and Linde Engineering
(2019)). PHX = Primary Heat Exchanger; IRC = In-
tegrated Reboiler Condenser. (We only modeled units
in the cold-box, the section of the plant demarcated
with red dashes, in our study)

The purified air (Fair feed) enters the PHX warm end, ex-
changing heat with the countercurrent cryogenic product
nitrogen and waste streams. At an intermediate position
through the PHX, a large portion of the air stream is
withdrawn as turbine air (FV air feed), which is expanded
in the turbine to provide refrigeration to the plant. The
expanded air is sent to the bottom of the distillation
column as a vapor stream. The other portion of air goes
through the entire length of the PHX, exiting as a liquid
(FL air feed), and is fed to the column above the vapor feed.

Rectification of air occurs in the distillation column around
6.6 bar (Caspari et al., 2018) and -180 degrees Celsius
(Cao et al., 2016a). An oxygen-rich liquid stream is routed
from the column sump (Bottom) to the reboiler side of
the integrated reboiler condenser (IRC), while the high-
purity nitrogen vapor stream from the top of the column
(Vtop) is split, with one portion going towards the PHX as
gaseous nitrogen product (FGN2) and the remainder to the
condenser side of the IRC. In the IRC, the nitrogen vapor
condenses against the boiling oxygen-rich liquid on the
reboiler side. A fraction of the condensed liquid nitrogen
can be drawn off as a liquid nitrogen product(FLN2) while
the rest of the liquid is sent to the column as reflux. The
boil-off generated on the reboiler side is routed toward the
PHX as the waste stream, which, together with the gaseous

nitrogen product, provides cooling in the PHX. The waste
stream is also used to regenerate the molecular sieve units.

2.2 Modeling process units

The distillation column modeling approach used in this
study is consistent with past studies on cryogenic ASUs
(Miller et al., 2008b; Cao et al., 2015, 2016a), where tray-
by-tray modeling is considered. The approach mirrors our
earlier work on the multiproduct ASU (Quarshie et al.,
2023b), which has multiple columns. The distinguishing
features of the column in this study are that it is en-
tirely made up of trays and does not use the collocation
model reduction technique discussed in our earlier work.
Noteworthy characteristics of the column include dynamic
material balance, pseudo steady-state energy balance, vari-
able stage pressure drop, non-ideal thermodynamics, and
heat leakage terms.

The IRC is a composite model of the reboiler and con-
denser sides, modeled using an approach that mirrors that
of Cao et al. (2015). The reboiler side is characterized by
dynamic material balance and pseudo-steady-state energy
balance and is modeled after the column trays. The liquid
level in the reboiler is controlled using a PI controller.

The PHX is a multi-stream heat exchanger in which phase
change occurs. We use the approach in Cao et al. (2015)
by which zones are predetermined for various phases.
Specifically, the approach uses two zones, with vapor air,
the FV airfeed in Figure 1, being drawn at the boundary
between the two zones and phase change occurring in the
second zone with a liquid air stream at the outlet.

We use the approach presented in Cao et al. (2015) for
the turbine. In Cao et al. (2015), the turbine is modeled
as a system of algebraic equations, which define polytropic
efficiency and correlations for discharge pressure, turbine
speed, and stream flow rate obtained from plant data.

2.3 Startup discontinuity modelling

Simulation of startup behavior is accomplished by cap-
turing discontinuities using smoothing functions such as
the hyperbolic tangent function. These discontinuities are
associated with three of the four categories of discontinu-
ities presented in our earlier work (Quarshie et al., 2023b),
namely:

• Liquid flow discontinuity: This involves transitioning
from zero flow, when tray liquid height is below the
top of the weir, to nonzero flow computed using the
Francis weir equation when the liquid level is above
the weir.

• Vapor flow discontinuity: This entails a change in
vapor flow dynamics from when the vapor from a
lower stage escapes through the unblocked down-
comer to reach the given tray to when the downcomer
is blocked, and vapor flow is determined from an
energy balance around the given stage.

• Flow out of sump and reboiler: This describes the
switching between manual control, for which the flow
rate is directly specified, and automatic control, for
which the flow rate is determined by a controller, for
flow out of these receptacles.
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2.4 Other modeling aspects

Modeling aspects not mentioned above but critical to the
study are presented below:

• Product flow computation: products from the process,
liquid, and gaseous nitrogen, have purity thresholds
that are met later in the startup. As such, product
flow is considered zero early on when the threshold
is not satisfied, even though the flow in the product
stream may be nonzero. To model this “switch-on”
behavior, we use the smoothed switching function
formulation proposed in our earlier work (Quarshie
et al., 2023a) to which the reader is referred.

• Logarithmic transformation of components: logarith-
mic transformation is applied to mole fractions of
the components to improve numerical robustness. We
use the transformations proposed in our earlier work
(Quarshie et al., 2023a).

3. FORMULATION AND IMPLEMENTATION

The resulting model is an index-1 differential algebraic
equation (DAE) system with 330 differential and 3,440
algebraic variables. We carry out the implementation in
Python using the CasADi (Andersson et al., 2018) front-
end package on a DELL XPS 8940 with 16GB RAM and
an Intel Core i9-10900 processor running MS Windows.
We use the optimization-based economic NMPC as our
approach. Following are details on the ASU startup op-
timization, the control strategy setup, the ENMPC opti-
mization formulation, and the ENMPC implementation,
under which we discuss strategies applied for improved
solution speed.

3.1 ASU startup optimization

ASU startup optimization involves taking the ASU at a
defined initial point, manipulating process inputs to take
the process to a defined steady state, improving a metric
(objective function) along the way, and ensuring process
constraints are not violated. In this study, we consider an
economic objective function for the underlying dynamic
optimization. We base our study on cold startup, when
the plant is initially at cryogenic temperatures.

The economic objective function is cumulative profit over
the startup horizon and is obtained by integrating the
difference between the total instantaneous revenues and
costs. This is illustrated by the function below:

J =

∫ tf

0

(∑
x∈X

Px.Fprod x − Celec

)
dt, (1)

where Px is the unit price for a given product x, Fprod x

is the flow rate of the on-spec product computed using
the formulation described under Section 2.4, Celec is the
electricity cost associated with air compression (Cao et al.,
2017), X represents the set of products, GN2 and LN2

which are gaseous nitrogen and liquid nitrogen products
respectively. The manipulated inputs of our system are
listed in Table 1. The first four inputs are self-explanatory
and can be identified in Figure 1. The fifth input: Rgasdraw

is the fraction of the vapor leaving the top of the column
sent towards the PHX; an identical input is used in the

Table 1. Input variables

Variable Symbol

Air feed to compressor Fairfeed

Liquid air feed FL.airfeed

GN2 rate FGN2

LN2 rate FLN2

Top tray gas draw fraction Rg.draw

nitrogen plant study in Cao et al. (2015). This vapor flow
traverses the same path as the FGN2 . Only one of FGN2 or
Rgasdraw is active at a time. We found that the system was
better controlled when the Rgasdraw was used at the early
stages of startup and the FGN2 more suitable as steady
state is approached. The choice between the two inputs
is based on the composition of the top-stage vapor, where
the logical condition is modeled using a hyperbolic tangent
function. Mathematically, this is given by:

FPL
GN2

= 0.5
(
1 + tanh

[
γ(ythtop − ytop)

])
Rg.draw.FV.top+

0.5
(
1− tanh

[
γ(ythtop − ytop)

])
FGN2

(2)
where FPL

GN2
is the vapor flow through the GN2 product

line, FV.top is the vapor flow from the top of the column, γ
is a parameter that controls the steepness of the hyperbolic
tangent function, ytop and ythtop denote the composition of
the column’s top tray vapor and the threshold composition
value at which active input selection switches from Rg.draw

to FGN2 respectively. According to Equation 2, when the
composition, ytop, is below the threshold value, ythtop, F

PL
GN2

is the product Rg.draw.FV.top, whereas when ytop is greater
than ythtop, F

PL
GN2

equals FGN2 . The final values of γ and ythtop
were obtained after numerous simulation experiments.

Table 2 lists the constraint variables that must be tracked
in the optimization problem. All these constraints are
path constraints. Except for the product stream composi-

Table 2. Constraint related variables

Constraint Type

Top tray flood percent path
Reboiler liquid level path
Sump liquid level path
Turbine outlet dew point path
Turbine inlet dew point path
Liquid air feed bubble point path
Product stream composition path

tion, all the variables are constrained in the optimization
formulation. With startup, the product purity threshold,
measured in parts per million of oxygen (PPMO), is at-
tained towards the end of startup, corresponding to the
steady state. Given that product generation is contingent
on meeting product purity, showing product flow towards
the end of startup implies that the product stream com-
position satisfies the product purity threshold towards the
end of startup.

3.2 Control setup

In this subsection, the control setup for measured distur-
bance rejection is discussed. This setup is illustrated in
Figure 2. We do not consider plant-model mismatch, and
assume full state feedback. The ENMPC serves the pur-
pose of counteracting the impact of the measured distur-
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Fig. 2. Control setup for measured disturbance rejection

bance on the plant. With the current states and measured
disturbance, the rolling horizon ENMPC computes over
the control horizon, and the inputs corresponding to the
first input interval are sent to the plant for implementa-
tion.

3.3 Optimization formulation and implementation

We apply the simultaneous solution approach for DO by
which both states and inputs are discretized, effectively
converting the problem into a nonlinear programming
(NLP) problem. For the discretizations, we use zero-order
hold for the inputs with the finite element (FE) length
of 0.36 hrs and backward Euler for the states by equally
subdividing the FE into 19 parts. The NLP is solved
using IPOPT (Wächter and Biegler, 2006), an interior
point solver. Given that the performance of IPOPT is
dependent on the linear solver used (Tasseff et al., 2019),
we experimented with various linear solvers from the
Harwell subroutine library (HSL, 2023) and selected MA97
in the process. One of the challenges of the simultaneous
solution DO approach is the requirement of a good initial
guess. To overcome this hurdle, we generate the initial
guess using backward Euler integration over the startup
horizon. However, the backward Euler integration also
requires an initial guess, which we obtain by integrating
the startup model over the startup horizon using the
SUNDIALS IDAS integrator (Hindmarsh et al., 2005).

3.4 Rolling horizon economic model predictive control

Startup of the ASU is a highly nonlinear process, spans
a wide operating range, and has multiple constraints
(Table 2). These attributes make the economic NMPC
formulation a suitable choice. Startup is often carried out
to drive the process to a pre-determined steady state,
implying a defined endpoint. As we have done in our past
studies on startup (Quarshie et al., 2023b,a), we fix the
inputs of the last control interval to reach the pre-selected
steady state in this study. This feature gives ASU startup a
batch process character. Conventionally, economic NMPC
for batch processes is implemented using a shrinking
horizon formulation (Nagy and Braatz, 2003) for which
both the control and prediction horizons shrink as the
controller marches toward the endpoint. Nonetheless, we
implement a rolling horizon approach for which the control
and prediction horizon lengths are maintained as the
controller marches along.

We select the rolling horizon approach over the shrinking
horizon approach to eliminate pre-optimization problem
formulation steps that are time-consuming. Solving an
NLP in CasADi first requires building an NLP formula-
tion, which, given our problem size, takes a considerable
amount of time. With the shrinking horizon formulation,
building a different NLP is required each time inputs have
to be computed due to the problem size changing from one
step to the next. However, the rolling horizon approach re-
quires just a single instance of NLP creation, and the NLP
is reused when inputs have to be computed. In essence, the
rolling horizon and shrinking horizon approaches represent
tradeoffs between a single, although large, NLP build; and
an NLP rebuild, shrinking in dimension, at each EMPC
iteration, respectively. In our case, it is more advantageous
to build the NLP once and solve a large optimization
problem at each iteration.

The optimization horizon is 20 input intervals long. For
the first ENMPC execution, the last interval has inputs
set to the steady-state values. This means that for the first
ENMPC execution, the determination of optimal inputs is
limited to only the first 19 input intervals. As the controller
marches on, for each additional step, the number of input
intervals for which inputs are set to their steady-state val-
ues increases by one, implying the number of intervals for
which inputs have to be determined decreases by one (this
is illustrated by Figure 3). Although the shrinking of the
input space resembles the shrinking horizon formulation, it
must be noted that the number of states to be determined
is maintained from one step to the next. To solve the

Fig. 3. Control horizon for ENMPC computations, illus-
trating change in input decisions demension

ENMPC optimization problem, we employ the simulta-
neous DO solution approach as described under Section
3.3. With input and state discretization as described early
on, the resulting NLP has more than 1.8 million variables:
states and inputs combined. Given the nonlinearity of
the startup model and dimensionality of the NLP, this
makes for a complex problem to solve with a nontrivial
consequence to the computational time. Thus, we use the
so-called shift initialization, a warm start strategy (Diehl
et al., 2009). The warm start strategy leverages the sim-
ilarity of neighboring NLPs for efficient initialization of a
subsequent problem using primal-dual information from
the preceding NLP solve. The shift initialization for the
rolling horizon approach is illustrated in Figure 4. To use
the primal-dual information from a preceding NLP solve,
the information corresponding to the first input interval is
discarded while that for the last interval is duplicated. As
will be seen in the next section, using the shift initialization
strategy resulted in a good computational performance.
This is attributed, in part, to the long horizon used, as
using this strategy with a short horizon length did not
lead to a superior performance relative to the conventional
warm start strategy (Diehl et al., 2009).
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Fig. 4. Shift initialization for rolling horizon formulation

4. CASE STUDY: DISTURBANCE REJECTION

In this subsection, we address the problem of measured
disturbance rejection using the ENMPC described in Sec-
tion 3.4. The disturbance being considered is motivated
by the scenario in which the air vent valve at the com-
pressor discharge is inadvertently opened. The impact of
this switch is that the cold-box does not receive the full
flow of air from the compressor. We limit the impact of
this disturbance to the change in the total air flow rate
only. This disturbance is modeled as the fraction of the
supposed air flow rate from the compressor that enters
the PHX. This is illustrated in Figure 5, where the total
fraction of air leaving the compressor enters the PHX
except at the time period between 4hr and 6hr, during
which the fraction is 0.94. However, the ENMPC “sees”
these changes through the measurement in real-time and is
not “aware” of the time and duration of the change ahead
of time. The ENMPC control interval in this study is 0.36
hrs. To assess the performance of the ENMPC in rejecting
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Fig. 5. Fractional change in air flow due to disturbance

this disturbance, we apply offline pre-computed open-loop
optimal base case (BC) inputs to the plant along with the
disturbance (BC u+dist). As such, while the air flow to the
PHX dips between 4hr and 6hr, the cost of electricity due
to compression should remain the same relative to the BC
because the same amount of air is compressed. However,
revenues, and in turn profit, should be affected given that
less feed is going into the process.

Table 3. Cumulative profit performance assess-
ment of ENMPC for disturbance rejection.

Execution type Scaled profits % change relative to BC

BC 51.906 -
BC u +dist 44.536 -14.2
ENMPC 48.972 -5.6
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Fig. 6. Instantaneous and cumulative profits from using
base case inputs with disturbance (BC u+dist) and
ENMPC computed inputs in response to disturbance.
(The arrows point to the reference axis)

Table 3 shows a summary of the performance of the
ENMPC. Whereas the disturbance results in losses in both
instances, the ENMPC significantly minimizes the profit
loss relative to using the BC inputs. The ENMPC reduces
profit loss by 9%, from 14% per the table. Figure 6 sheds
more light on the comparison by showing cumulative and
instantaneous profit trajectories. Up to just after hour 6,
the two trajectories coincide perfectly, with losses being
incurred as costs are more dominant relative to revenues.
Beyond that point, the ENMPC trajectory begins to
recover first from the loss, even as instantaneous profit is
positive and the cumulative profit begins an upward trend.

Computational statistics are presented in Table 4. The
cycles correspond with control horizon optimizations for
which the CPU secs and the number of NLP iterations are
reported. The measured disturbance occurs across cycles
12 to 15, thus the highlight. Outside the highlighted parts
of the table, the number of NLP iterations is mostly
1, lasting about 200 CPU secs. This low number of
iterations indicates the efficacy of the shift initialization
warm start strategy. However, cycle 14 shows high CPU
seconds and NLP iteration counts. This long solution
time is attributed, in part, to the disturbance changing
model states such that the preceding solutions are no
longer suitable, requiring the controller to perform more
iterations, which takes a longer time.

5. CONCLUSION

In this work, we set out to assess the potential benefit
of a control strategy beyond an offline optimal open-loop
strategy for disturbance rejection in ASU startup. For
this purpose, we proposed a control framework, leveraging
an ENMPC formulation to which we applied the shift-
initialization strategy for improved computational speed.
The proposed framework showed significant profit recov-
ery relative to the use of pre-computed optimal inputs,
indicating that ASU startup operations stand to benefit
economically from the application of ENMPC. The compu-
tational statistics demonstrate the efficacy of the strategies
adopted for improved computational speed, although the
framework, as is, has limitations for online implementation
due to the long computational time reported for one of
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Table 4. Computational statics of the ENMPC

Cycle CPU sec NLP Iter.

0 1460 8
1 220 1
2 242 1
3 222 1
4 219 1
5 330 2
6 318 2
7 216 1
8 223 1
9 221 1
10 219 1
11 178 1
12 228 1
13 207 1
14 7990 30
15 248 1
16 231 1
17 177 1
18 516 2
19 148 0

the cycles. As such, an obvious future research direction
is the exploration of strategies to further improve solution
time. Other potential directions include the consideration
of plant-model mismatch, due to parameter uncertainty,
which may require computationally efficient parameter
estimation, and the consideration of uncertainty external
to the process, such as electricity price uncertainty.
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Golubev, D., Thomas, I., Ecker, A.M., Rehfeldt, S., and
Klein, H. (2021). Development of a digital twin for a
flexible air separation unit using a pressure-driven sim-
ulation approach. Computers & Chemical Engineering,
151, 107349.

Kender, R., Wunderlich, B., Thomas, I., Peschel, A., Re-
hfeldt, S., and Klein, H. (2019). Pressure-driven dy-
namic simulation of start up and shutdown procedures
of distillation columns in air separation units. Chemical
Engineering Research and Design, 147, 98–112.

Linde Engineering (2019). Air separation plants: History
and technological progress in the course of time.

Miller, J., Luyben, W.L., and Blouin, S. (2008a). Eco-
nomic incentive for intermittent operation of air sepa-
ration plants with variable power costs. Industrial &
engineering chemistry research, 47(4), 1132–1139.

Miller, J.J., Luyben, W.L., Belanger, P., Blouin, S., and
Megan, L. (2008b). Improving agility of cryogenic air
separation plants. Industrial & Engineering Chemistry
Research, 47(2), 394–404.

Nagy, Z.K. and Braatz, R.D. (2003). Robust nonlinear
model predictive control of batch processes. AIChE
Journal, 49(7), 1776–1786.

Quarshie, A.W.K., Swartz, C.L.E., Cao, Y., Wang, Y.,
and Flores-Cerrillo, J. (2023a). Dynamic optimization
of multiproduct cryogenic air separation unit startup.
Industrial & Engineering Chemistry Research, 62(27),
10542–10558.

Quarshie, A.W.K., Swartz, C.L.E., Madabhushi, P.B.,
Cao, Y., Wang, Y., and Flores-Cerrillo, J. (2023b).
Modeling, simulation, and optimization of multiproduct
cryogenic air separation unit startup. AIChE Journal,
69(2), e17953.
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