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Abstract: The application of proportional-integral-derivative (PID) control schemes to nonlinear multiple-

input, multiple-output (MIMO) systems with time-varying uncertainty is challenging and underexplored. 

In this study, we formulated a deep Reinforcement Learning (RL) based PID tuning strategy with key 

novelty in designing an RL agent to achieve real-time adaptive MIMO PID tuning to track setpoints while 

considering time-varying uncertainty. We evaluated our tuning strategy on a continuous stirred-tank reactor 

subject to time-varying uncertainty. While conventional PID failed to track the effluent concentration 

setpoint and caused large errors and offsets, the proposed RL agents achieved fast and accurate setpoint 

tracking that significantly reduced the errors and eliminated offsets; thus, making our RL-based strategy 

attractive for chemical engineering applications under time-varying uncertainty. 

Keywords: Reinforcement Learning, PID control, MIMO System, time-varying uncertainty, adaptive 

control 

1. INTRODUCTION 

Proportional-integral-derivative (PID) controllers remain the 

most widely adopted and popular controllers in the industry 

because of their simplicity, robustness, low-cost, and broad 

applicability with satisfactory performance; particularly at the 

lower level of the control hierarchy (Carlucho et al., 2020). 

Consequently, a popular topic is the development of adaptive 

PID tuning strategies for a variety of control task scenarios. 

Conventional PID tuning approaches have been well-

developed and mainly categorized into two groups: i) rule-

based tuning approaches, e.g., Ziegler-Nichols and Cohen-

Coon, and ii) model-based tuning approaches, e.g., Internal 

Model Control (IMC). However, most practical systems in the 

industry are nonlinear and time-varying. This makes the 

conventional PID tuning approaches less applicable as they 

would require frequent re-tuning whenever there are changes 

in the system. The problem is even more prominent when 

attempting to implement a PID control scheme for complex 

systems, such as nonlinear multiple-input, multiple-output 

(MIMO) systems under time-varying uncertainty. This 

problem has prompted the development of adaptive PID tuning 

approaches for such complex systems.  

Studies in developing adaptive PID controllers for MIMO 

systems with time-varying uncertainty are limited. Gopmandal 

and Ghosh (2021) and Pradhan and Ghosh (2022) considered 

the MIMO PID design problem for MIMO systems with norm-

bounded time-varying uncertainties by transforming it into a 

static output feedback problem. However, both studies only 

considered linear MIMO systems. Also, none of those studies 

explored the controllability of nonlinear MIMO systems with 

time-varying uncertainty in the form of time-varying 

parameters with uncertain coefficients.   

Reinforcement Learning (RL) has been extensively and 

successfully employed in various domains, such as adaptive 

PID control (Yu et al., 2022) and chemical engineering 

(Mendiola-Rodriguez and Ricardez-Sandoval, 2022). A few 

studies have considered RL-based PID tuning methods for 

MIMO systems. Carlucho et al. (2020) proposed a deep RL-

based adaptive MIMO PID tuning approach for low-level 

control in mobile robots using an inverted deep deterministic 

policy gradient (IDDPG) algorithm. Wang et al. (2021) 

introduced an adaptive PID tuning scheme for controlling a 

MIMO nonlinear six-joint manipulator using a deep 

deterministic policy gradient (DDPG) algorithm. Yu et al. 

(2022) applied a model-free self-adaptive SAC-PID control 

for mobile robots based on the soft actor-critic algorithm. RL-

based adaptive PID tuning approaches have also been 

developed for other MIMO systems, e.g., vapour compression 

cycles (Ding et al., 2022). However, none of them considered 

nonlinear MIMO systems under time-varying uncertainty. 

The present study formulates a deep RL-based adaptive PID 

tuning strategy for controlling a class of nonlinear MIMO 

systems subject to time-varying uncertainty, i.e., time-varying 

parameters with uncertain coefficients with known bounds. 

The proposed tuning approach modified the IDDPG algorithm 

proposed by Carlucho et al. (2020) by designing a tailored RL 

agent (i.e., state vector, action vector, and reward function) 

combined with a training procedure for the nonlinear MIMO 

systems subject to time-varying uncertainty. To the authors’ 

knowledge, this study is the first that tackles the PID tuning 

challenge for nonlinear MIMO systems with time-varying 

uncertainty using deep RL. This study is organized as follows. 

Section 2 constructs the tuning problem of the multiloop PID 

control scheme for a class of nonlinear MIMO systems with 

time-varying uncertainty. Section 3 describes the proposed 

mathematical framework. Section 4 applies the mathematical 

framework to a case study: a nonlinear MIMO continuous 

stirred-tank reactor (CSTR) with time-varying uncertainty due 

to catalyst deactivation and regeneration. Concluding remarks 

and recommendations for future work are presented at the end. 
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2. PROBLEM STATEMENT 

2.1 MIMO system with time-varying uncertainty 

Consider the following nonlinear MIMO system with 

uncertain time-varying parameters with respect to the states 

and inputs: 

𝒙̇ = 𝑓(𝒙, 𝒖, 𝑡, 𝝓) (1)

𝒚 = ℎ(𝒙) (2)
 

𝝓 = 𝑔(𝑡, 𝛂) (3) 

where 𝒙 ∈ 𝑅𝑛𝑥, 𝒙̇ ∈ 𝑅𝑛𝑥, 𝒖 ∈ 𝑅𝑛𝑢, and 𝒚 ∈ 𝑅𝑛𝑦  are the state 

vector, the differential state vector, the input vector, and the 

output vector, respectively. It is assumed that 𝑛𝑦 ≤ 𝑛𝑢 . 𝝓 ∈

𝑅𝑛𝜙 represents the time-varying parameters with an uncertain 

bounded vector of coefficients 𝜶 ∈ 𝑅𝑛𝛼 . We assume the bound 

of vector 𝜶 is known a prior, but their specific realizations are 

unknown. Examples that lead to such time-varying parameters 

in the chemical engineering field are fouling on heat transfer 

surfaces, catalyst deactivation and regeneration, and time-

varying kinetic parameters in bioprocesses. These factors often 

render the processes to behave as non-stationary. 𝑓: 𝑅𝑛𝑥 ×
𝑅𝑛𝑢 × 𝑅𝑛𝜙 ↦ 𝑅𝑛𝑥  represents the set of nonlinear differential 

equations that describe the system’s dynamics; ℎ: 𝑅𝑛𝑥 ↦ 𝑅𝑛𝑦  

and 𝑔: 𝑅𝑛𝛼 ↦ 𝑅𝑛𝜙 denote the sets of algebraic equations for 

the system’s outputs and the time-varying parameters, 

respectively. The control objective is to conduct setpoint 

tracking of 𝒚 regarding a setpoint vector 𝒚𝒔𝒑 ∈ 𝑅𝑛𝑦  using a 

multiloop PID control scheme in the presence of time-varying 

uncertainty. 

2.2 Multiloop PID control scheme 

It is assumed that multi-loop PID control pairings between the 

outputs (controlled variables, CVs) and the inputs 

(manipulated variables, MVs) are defined prior. Hence, there 

are in total 𝑛𝑦 control loops (CV-MV pairings) in response to 

𝑛𝑦 outputs (CVs). For each control loop 𝑖, a PID controller is 

considered with proportional gain (𝐾𝑐
𝑖), integral time constant 

(𝜏𝐼
𝑖), and derivative time constant (𝜏𝐷

𝑖 ). Any form of the PID 

algorithm can be considered. Thus, the PID parameters to be 

tuned are denoted as a vector 𝒌 , such that 𝒌 =
(𝒌𝟏, 𝒌𝟐, … , 𝒌𝒏𝒚) , where 𝒌𝒊 = (𝐾𝑐

𝑖 , 𝜏𝐼
𝑖, 𝜏𝐷

𝑖 )  for 𝑖 = 1, 2, … , 𝑛𝑦 . 

Traditionally, 𝒌 is tuned offline using conventional PID tuning 

methods such as Zeigler-Nichols or IMC. However, such 

tuning approaches usually lead to poor control performance 

due to a lack of real-time response to the non-stationary and 

nonlinear behaviour of the MIMO system under time-varying 

uncertainty. One solution is to make use of an adaptive RL-

based PID tuning approach, as presented in the next section.  

3. MATHEMATICAL FRAMEWORK 

In this section, we formulate our mathematical framework 

based on the IDDPG algorithm proposed by Carlucho et al. 

(2020) and design our own RL agent to solve the tuning 

problem we presented in the previous section. The DDPG 

algorithm is a model-free, off-policy, actor-critic algorithm for 

continuous action space, and it is inherently suitable for 

handling uncertainty (Mendiola-Rodriguez and Ricardez-

Sandoval, 2022). The IDDPG algorithm is selected since 

Carlucho et al. (2020) further inverted the critic’s gradients in 

the DDPG algorithm to constrain within bounds the output 

actions and prevent saturation. Nevertheless, we design our 

own state vector, action vector, and reward function to adapt 

our RL agent to the proposed PID tuning task while 

considering the time-varying uncertainty by incorporating 

realizations of uncertain coefficients into RL agent training. 

3.1 IDDPG algorithm 

The IDDPG algorithm is an improved version of the DDPG 

algorithm; hence, the following components in the IDDPG 

algorithm are the same as in the DDPG (Lillicrap et al., 2015): 

(1) Reply buffer: As an off-policy algorithm, the DDPG 

uses a reply buffer 𝑹 to store transitions. At a time 𝑡, 

the transition (𝒔𝒕, 𝒂𝒕, 𝑟𝑡 , 𝒔𝒕+𝟏)  includes the current 

state vector (𝒔𝒕), the action vector (𝒂𝒕), the reward 

(𝑟𝑡), and the next state vector (𝒔𝒕+𝟏).   

(2) Actor-network: The actor-network is estimated with 

a deterministic policy 𝜇(𝒔|𝜃𝜇) with weight 𝜃𝜇. 

(3) Critic-network: The critic-network is estimated with 

a state-action value function 𝑄(𝒔, 𝒂|𝜃𝑄) with weight 

𝜃𝑄.  

(4) Soft update: To prevent instability during training, 

the DDPG also employs a target critic-network 

𝑄′(𝒔, 𝒂|𝜃𝑄′
)  with weight 𝜃𝑄′

 and a target actor-

network 𝜇′(𝒔|𝜃𝜇′
) with weight 𝜃𝜇′

 to soft update the 

learned networks. The target networks are updated as 

follows: 

𝜃𝑄′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

(4) 

𝜃𝜇′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

(5) 

where 𝜏 ≪ 1 

(5) Exploration policy: In the DDPG, the exploration is 

performed by adding noise 𝝐𝒂𝒕
 sampled from a noise 

process to the actor policy, such that at any time 𝑡: 
𝒂𝒕 = 𝜇(𝒔𝒕|𝜃𝜇) + 𝝐𝒂𝒕

(6) 

In addition to the main components of the DDPG discussed 

above, the IDDPG algorithm further limits the critic gradients 

by inverting them to keep the actions selected by the actor-

network within the specified bounds and prevent saturation. 

This is formulated as follows (Carlucho et al., 2020): 

𝛻𝒂𝑄𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑 = {

𝛻𝒂𝑄 (
𝒂𝒎𝒂𝒙 − 𝒂

𝒂𝒎𝒂𝒙 − 𝒂𝒎𝒊𝒏

) , ∀ 𝛻𝒂𝑄 > 0 

𝛻𝒂𝑄 (
𝒂 − 𝒂𝒎𝒊𝒏

𝒂𝒎𝒂𝒙 − 𝒂𝒎𝒊𝒏

) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7) 

𝛻𝒂𝑄 =
𝜕𝑄(𝒔𝒕, 𝜇(𝒔𝒕|𝜃𝜇))

𝜕𝒂
(8) 

where 𝛻𝒂𝑄 is the gradient of the state-action value function; 

𝒂𝒎𝒂𝒙 and 𝒂𝒎𝒊𝒏 are the upper and lower bounds of the action 

vector, respectively. The inverted critic’s gradients are 

implemented into the critic- and actor-networks update 

procedure as follows. First, randomly sample a minibatch of 𝑁 

transitions (𝒔𝒋, 𝒂𝒋, 𝑟𝑗 , 𝒔𝒋+𝟏) from the reply buffer 𝑹. With this 

minibatch, the critic is updated by minimizing the loss 𝐿, i.e., 
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𝐿 =
1

𝑁
∑(𝑦𝑗 − 𝑄(𝒔𝒋, 𝒂𝒋|𝜃

𝑄))2

𝑁

𝑗

 (9) 

𝑦𝑗 = 𝑟𝑗 + 𝛾𝑄′(𝒔𝒋+𝟏, 𝜇′(𝒔𝒋+𝟏|𝜃𝜇′
)|𝜃𝑄′

) (10) 

where 𝛾 ∈ [0, 1] is the discounting factor. Then, obtain the 

critic’s gradients 𝛻𝑎𝑄  using (8) and calculate the inverted 

gradients 𝛻𝑎𝑄𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑   using (7). The actor policy is then 

updated using the sampled policy gradient as follows: 

𝛻𝜃𝜇𝐽 ≈
1

𝑁
∑ [𝛻𝒂𝑄𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑(𝒔, 𝒂|𝜃𝑄)|𝒔=𝒔𝒋,𝒂=𝜇(𝒔𝒋)

𝑗

𝛻𝜃𝜇𝜇(𝒔|𝜃𝜇)|𝒔𝒋
] (11)

 

where 𝐽 is the objective function of the actor function. 

3.2 RL agent design 

In this section, we present the RL agent’s design to address the 

problem statement presented in section 2, i.e., tuning of the 

multiloop PID control scheme for the nonlinear MIMO system 

under time-varying uncertainty. A pseudo-code that illustrates 

how we incorporate the design of the RL agent into the IDDPG 

algorithm is presented in Algorithm 1.  

Algorithm 1: Proposed RL-based tuning strategy 

line Pseudo-code 

1 Random initialize actor 𝜇 and critic 𝑄 networks with 

weights 𝜃𝜇 and 𝜃𝑄 

2 Initialize target networks 𝜇′ and 𝑄′ with weights 

𝜃𝜇′
← 𝜃𝜇 and 𝜃𝑄′

← 𝜃𝑄  

3 Initialize replay buffer 𝑹 

4 for episode = 1 to M do 

5  Initialize a random noise process for exploration  

6  Receive initial state 𝒔𝟏 and setpoint vector 𝒚𝒔𝒑 

7  Randomly and uniformly sample a vector of 

uncertain coefficient 𝛂 from given bounds  

8  for 𝑧 = 1 to 𝑡𝑚𝑎𝑥/∆𝑡/𝑃 do 

9   Select action 𝒂𝒛 based on 𝒔𝒛 and 𝝐𝒂𝒛
 using 

(6), then compute 𝒌𝒛 using (12)  

10   for 𝑝 = 1 to 𝑃 do 

11    Execute 𝒌𝒛 with 𝛂 and observe 𝑪𝑽𝒛𝒑
 

12   end for 

13   Obtain 𝒔𝒛+𝟏 and calculate 𝑟𝑧 

14   Store transition (𝒔𝒛, 𝒂𝒛, 𝑟𝑧 , 𝒔𝒛+𝟏) in 𝑹 

15   if |𝑹| > 𝑁 then 

16    Sample a random minibatch of 𝑁 

transitions (𝒔𝒋, 𝒂𝒋, 𝑟𝑗 , 𝒔𝒋+𝟏) from 𝑹 

17    Set 𝑦𝑗 using (10)  

18    Update critic by minimizing loss 𝐿 in (9) 

19    Obtain critic’s gradients 𝛻𝒂𝑄 using (8) 

20    Obtain inverted critic’s gradients using (7) 

21    Update actor using (11) 

22    Update target networks using (4) and (5) 

23   end if 

24  end for 

25  Calculate episodic return = − ∑ 𝑟𝑧
𝑧=𝑡𝑚𝑎𝑥/∆𝑡/𝑃
𝑧=1   

26 end for 

In line 7, to consider the time-varying uncertainty in the RL 

agent’s design, a vector 𝜶  of the uncertain coefficients is 

sampled randomly and uniformly from their given bounds at 

the beginning of each training episode. The selected realization 

in 𝜶  is then introduced into the environment for RL agent 

training within that episode (lines 8 to 24). Note that the 

realizations in 𝜶 remain constant throughout each episode. To 

achieve real-time adaptive PID tuning and track the setpoint 

under time-varying conditions, the agent needs to interact with 

its environment frequently. As shown in lines 8 to 24, within a 

training episode with 𝑡𝑚𝑎𝑥  simulation time and 𝑡𝑚𝑎𝑥/
∆𝑡 sampling time steps (∆𝑡), the RL agent interacts with the 

environment every 𝑃  sampling time steps. Note that z 

specifies the total number of 𝑃 sampling steps considered in 

an episode. As shown in line 9, the agent samples an action 

vector 𝒂𝒛  based on the current state vector 𝒔𝒛  and 𝝐𝒂𝒛
. 

Although the IDDPG does not use any probability distribution, 

a normalized action space with a range of [−1, 1] is used as a 

convention. Thus, the normalized 𝒂𝒛 is used to compute 𝒌𝒛 to 

test the multiloop PID control scheme for the next 𝑃 sampling 

time steps. This procedure is as follows: 

𝒌𝒛 = [
𝑐𝑙𝑖𝑝

−1; 1
(𝒂𝒛 + 𝛽𝝐𝒂𝒛

)]
𝒌𝒎𝒂𝒙 − 𝒌𝒎𝒊𝒏

2
+

𝒌𝒎𝒂𝒙 + 𝒌𝒎𝒊𝒏

2
(12) 

𝝐𝒂𝒛
~𝒩(𝜑, 𝑰 ∙ 𝜎) (13) 

𝛽 = 𝑚𝑎𝑥 (𝛽𝑚𝑖𝑛 , 𝜅𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝑛𝑢𝑚𝑏𝑒𝑟) (14) 

where 𝒌𝒎𝒂𝒙  and 𝒌𝒎𝒊𝒏  are the upper and lower bounds of 

vector 𝒌 . The action noise vector 𝝐𝒂𝒛
 is sampled from a 

Gaussian distribution as it generally provides a higher return 

than the Ornstein–Uhlenbeck noise process (Hollenstein et al., 

2022). 𝜑  and 𝜎  are the mean and standard deviation of the 

Gaussian noise. Typically, 𝜑 = 0  and 𝜎 = 0.1 . 𝑰  is the 

identity matrix. 𝛽 is an action noise scaling factor and is used 

for the scheduled reduction of action noise to improve the 

robustness of the learning process. 𝛽 decays with the increase 

in the episode number and a decay factor of 𝜅, until reaching 

the minimum value 𝛽𝑚𝑖𝑛 , as shown in (14). As shown in 

Algorithm 1, lines 10 to 12, the RL agent executes 𝒌𝒛 with the 

realizations in 𝜶 for 𝑃 sampling time steps and records sensor 

measurements of CVs: 𝑪𝑽𝒛𝟏
, 𝑪𝑽𝒛𝟐

, …, 𝑪𝑽𝒛𝑷
. As shown in 

line 13, the RL agent obtains the next state vector 𝒔𝒛+𝟏 and 

calculates the reward 𝑟𝑧 from the past 𝑃 sampling time steps. 

The next state vector 𝒔𝒛+𝟏  is composed of the sensor 

measurements of CVs in the past 𝑃 sampling time steps (𝑪𝑽𝒛𝟏
, 

𝑪𝑽𝒛𝟐
, …, 𝑪𝑽𝒛𝑷

), the action vector (𝒂𝒛) at step 𝑧, and the last 

error vector (𝜺𝒛𝑷
= 𝒚𝒔𝒑 − 𝑪𝑽𝒛𝑷

) to provide the agent with 

information about the setpoint tracking errors. Note that for the 

initial state vector 𝒔𝟏 (line 6), the initial CVs’ conditions in the 

system were used with an initial action vector based on tuning 

parameters obtained from conventional PID tuning methods. 

The design of the reward function follows a well-known PID 

controller tuning criterion: the integral of the time-weighted 

absolute error (ITAE) criterion in the integral error criteria. 

ITAE is selected as it is conservative and penalizes errors that 

exist for long periods of time. Accordingly, the reward 𝑟𝑧 for 

every 𝑃 sampling time step is constructed as follows: 
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𝑟𝑧 = ∑ 𝜔𝑖 ∫ 𝑡|𝜀𝑖(𝑡)|
𝑡𝑧𝑃

𝑡𝑧1

𝑑𝑡

𝑛𝑦

𝑖

(15) 

𝜀𝑖 = 𝑦𝑠𝑝
𝑖 − 𝐶𝑉𝑖 (16) 

where 𝜀𝑖 and 𝜔𝑖 are the error and the weighting factor for each 

control loop, respectively.  

4.  RESULTS AND DISCUSSIONS 

4.1 Cast study 

The approach presented in the previous section is tested on a 

case study that features the control of a MIMO nonlinear non-

isothermal CSTR process with a first-order irreversible 

reaction (A→B) and time-varying activation energy. This 

MIMO CSTR process was modified from a single-input, 

single-output CSTR process (Nikravesh et al., 2000). 

 

Figure 1. An illustration of the MIMO CSTR process 

As shown in Fig. 1, two control loops are considered: the first 

control loop pairs the effluent concentration ( 𝐶𝐴 ) and the 

coolant flow rate (𝑞𝑐), whereas the second control loop pairs 

the reactor’s hold-up (𝑉) with the outlet flowrate (𝑞𝑜). The 

objective is to maintain 𝐶𝐴 and 𝑉 to a specific setpoint, 𝐶𝐴,𝑠𝑝 =

70 𝑚𝑜𝑙/𝑚3 and 𝑉𝑠𝑝 = 0.085 𝑚3. Equation (1) is represented 

as follows in this MIMO CSTR process model: 

𝑑𝑉

𝑑𝑡
= 𝑞𝑓 − 𝑞𝑜 (17)

 
𝑑𝐶𝐴

𝑑𝑡
=

𝑞𝑓

𝑉
(𝐶𝐴𝑓 − 𝐶𝐴) − 𝑘0𝐶𝐴 𝑒𝑥𝑝 (−

𝐸

𝑅𝑇
) 𝜙𝑐(𝑡) (18)

𝑑𝑇

𝑑𝑡
=

𝑞𝑓

𝑉
(𝑇𝑓 − 𝑇) +

(−∆𝐻)𝑘0𝐶𝐴

𝜌𝐶𝑝

𝑒𝑥𝑝 (−
𝐸

𝑅𝑇
) 𝜙𝑐(𝑡)

+
𝜌𝑐𝐶𝑝𝑐

𝜌𝐶𝑝𝑉
𝑞𝑐 [1 − 𝑒𝑥𝑝 (−

ℎ𝐴

𝑞𝑐𝜌
𝑐
𝐶𝑝𝑐

)] × (𝑇𝑐𝑓 − 𝑇) (19)

 

where 𝐶𝐴𝑓 , 𝑞𝑓 , and 𝑇𝑓  are the feed concentration, flow rate, 

and temperature, respectively. 𝑇𝑐𝑓 and 𝑇𝑐 are the coolant inlet 

and outlet temperatures, respectively. At the nominal 

operating condition, 𝑞𝑓, 𝑞𝑜, and 𝑉 are set to 0.001667 𝑚3/𝑠, 

0.001667 𝑚3/𝑠 , and 0.1 𝑚3 , respectively. The rest of the 

model parameters and nominal conditions for this process can 

be found in Nikravesh et al. (2000). 

In this MIMO CSTR process, the time-varying parameters 𝝓 

in (3) are in the form of 𝜙𝑐(𝑡) in (18) and (19). The time-

varying uncertainty considered in this case study is the time-

varying activation energy due to catalyst conditions. There are 

two catalyst conditions of interest: i) catalyst deactivation due 

to poisoning with time-varying parameter 𝜙𝑐,𝑑(𝑡) , and ii) 

catalyst regeneration with time-varying parameter 𝜙𝑐,𝑟(𝑡) . 

Since theoretical expressions do not exist for the catalyst 

deactivation and regeneration, empirical correlations are 

considered (Nikravesh et al., 2000):  

𝜙𝑐,𝑑(𝑡) = 𝑒𝑥𝑝 (−𝛼𝑐,𝑑

𝐸

𝑅𝑇
𝑡) (20) 

𝜙𝑐,𝑟(𝑡) = 𝑒𝑥𝑝 (−𝛼𝑐,𝑟

𝐸

𝑅𝑇
𝑡) (21) 

where 𝛼𝑐,𝑑  and 𝛼𝑐,𝑟  are the deactivation and regeneration 

constants, respectively, with known specific bounds 

determined based on the nature of the case study, i.e., 𝛼𝑐,𝑑 ∈

[0.00306, 0.00374] and 𝛼𝑐,𝑟 ∈ [− 0.003674, −0.003006]. 

4.2 Preliminaries 

For this case study, the velocity form of the PID algorithm with 

anti-proportional and anti-derivative kicks was considered. 

This algorithm is often used in the industry to prevent 

proportional and derivative kicks due to a sudden step change 

in the setpoint, as the proportional and derivative kicks may 

damage the final control element, i.e., control valves. For the 

𝑖𝑡ℎ control loop, this PID algorithm is as follows: 

∆𝑀𝑉𝑖 = 𝐾𝑐
𝑖 [(𝑦𝑡−1

𝑖 − 𝑦𝑡
𝑖) +

∆𝑡

𝜏𝐼
𝑖

𝜀𝑡
𝑖

−
𝜏𝐷

𝑖

∆𝑡
(𝑦𝑡

𝑖 − 2𝑦𝑡−1
𝑖 + 𝑦𝑡−2

𝑖 )] (22)

 

where ∆𝑀𝑉𝑖 is the change in MV compared to the previous 

output (𝑀𝑉𝑡−1
𝑖 ).  

Before training the RL agent, the tuning parameters of the 

conventional PID controllers were obtained. The first and 

second control loops were tuned using the IMC tuning method 

and the level controller tuning method (Smuts, 2011). Hence, 

[𝐾𝑐
1, 𝜏𝐼

1, 𝜏𝐷
1 ] = [190.1, 0.556, 0.827]  and [𝐾𝑐

2, 𝜏𝐼
2, 𝜏𝐷

2 ] =
[−12.0, 0.4, 0.05] . These PID tuning parameters were also 

used as the initial action vector in the initial state vector 𝒔𝟏 

(line 6 in Algorithm 1). 𝒌𝒎𝒂𝒙 and 𝒌𝒎𝒊𝒏 of the vector 𝒌 to be 

tuned were set to 𝒌𝒎𝒂𝒙 = [[500, 10, 5], [−0.5, 10, 1]]  and 

𝒌𝒎𝒊𝒏 = [[150, 0.01, 0.01], [−15, 0.1, 0.01]]. 

Deep neural networks were used for critic- and actor-networks 

function approximations in the RL-based strategy. Similar to 

Carlucho et al. (2020), fully connected layers were used to 

construct deep neural networks with leaky rectified linear units 

(ReLU) as activation functions. The neural networks contained 

two hidden layers with 400 and 300 neurons, respectively. This 

configuration was chosen as it can handle the complexity of 

the case study without causing a high computational burden. 

Actions were introduced to the second layer of the critic-

network. Other parameters and hyperparameters used in the 

RL agent settings were obtained from trial-and-error and are 

as follows: the critic and actor learning rates were set to 10−3 

and 10−4, respectively; the sizes of the minibatch and replay 

buffer were 64 and 105, respectively; moreover, 𝛾, 𝜏, 𝜅, and 
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𝛽𝑚𝑖𝑛  were set to 0.99, 10−3 , 0.999, and 0.01, respectively. 

To match the magnitude difference between effluent 

concentration and reactor’s hold-up, the weighting factors 

chosen for the first and second control loops in (15) were 0.1 

and 1000, respectively.  

4.3 RL agent training 

Two scenarios were considered, i.e., catalyst deactivation and 

catalyst regeneration. Hence, an RL agent was trained for each 

scenario. To account for time-varying uncertainty in the 

catalyst deactivation scenario, as illustrated in line 7 of 

Algorithm 1, at the beginning of each training episode, an 𝛼𝑐,𝑑 

value was randomly and uniformly sampled from its given 

bounds and applied to the MIMO CSTR environment for RL 

agent training. The realization of 𝛼𝑐,𝑑 remained constant for 

the RL agent’s training within that episode. The same 

procedure was used for RL agent training in the catalyst 

regeneration scenario, except that an 𝛼𝑐,𝑟 value was sampled 

from its given bounds instead. To ensure prompt response to 

the time-varying system while tracking the setpoint, ∆𝑡, 𝑃, and 

𝑡𝑚𝑎𝑥  were set to 0.45  seconds, 15 , and 1800  seconds (30 

minutes), respectively. Each RL agent underwent 50,000 

episodes to provide sufficient time for the agent to learn. Both 

RL agents’ training was conducted on a PC with Intel® Core™ 

i7-9700K CPU @ 3.60 GHz and 64 GB of RAM using 

TensorFlow 1 in Python. As shown in Fig. 2, RL agents for 

both scenarios converged after 30,000 training episodes.  

 

Figure 2. Episodic returns of the two RL agents: (a) catalyst 

deactivation and (b) catalyst regeneration. 

4.4 Validation of proposed PID tuning strategy 

The setpoint tracking performances of the RL agent in each of 

the two scenarios were validated using 1000 testing runs. For 

the catalyst deactivation scenario, the 1000 testing runs were 

conducted with different 𝛼𝑐,𝑑 values randomly and uniformly 

drawn from their corresponding bounds. Whereas for the 

catalyst regeneration scenario, different values of 𝛼𝑐,𝑟  were 

used instead. The RL agents’ setpoint tracking performances 

are compared with those of conventional PID controllers in 

terms of ITAEs and the offsets estimated at the end of the 

simulation time. Table 1 lists the mean and standard deviation 

of ITAEs over 1000 testing runs under catalyst deactivation 

and regeneration time-varying scenarios. As shown in Table 1, 

the RL agents perform significantly better than the 

conventional PID controllers for the effluent concentration 

setpoint tracking performances in both time-varying scenarios. 

In the catalyst deactivation scenario (𝜙𝑐,𝑑 ), the mean and 

standard deviation of ITAEs of the RL agent were reduced by 

94.70% and 98.33 %, respectively, compared to conventional 

PID controllers. Similarly, in the catalyst regeneration 

scenario (𝜙𝑐,𝑟), the RL agent reduced the mean and standard 

deviation of ITAEs by 97.95% and 99.12%, respectively. The 

large reductions in standard deviations suggest that the RL 

agents exhibit better generalization capabilities than the 

conventional PID controllers in the face of time-varying 

uncertainty.  

Table 1. Comparison of setpoint tracking performances in terms of 

the mean and standard deviation of ITAEs (mean ±  standard 

deviation).  

CV 
ITAE for Catalyst Deactivation (𝜙𝑐,𝑑) 

RL-PID  PID 

Effluent 

Concentration 
132.37 ± 1.37 2496.20 ± 82.23 

Reactor’s 

Hold-up 
0.7426 ± 0.0001 1.6969 ± 0 

CV 
ITAE for Catalyst Regeneration (𝜙𝑐,𝑟) 

RL-PID  Conventional PID 

Effluent 

Concentration 
148.08 ± 5.90 7224.23 ± 670.41 

Reactor’s 

Hold-up 
1.5145 ± 0.0189 1.6969 ± 0 

 

On the other hand, the RL agents perform slightly better than 

conventional PID controllers in both time-varying scenarios 

for the reactor’s hold-up setpoint tracking. Compared to 

conventional PID controllers, the means of ITAEs of RL 

agents were reduced by 56.24% and 10.75% in catalyst 

deactivation and regeneration scenarios, respectively. 

However, the standard deviations of conventional PID 

controllers are 0, which suggests that the time-varying 

uncertainty only affects the first control loop, and there is no 

interaction between the two control loops. In contrast, the RL 

agents display very small standard deviations. This behaviour 

is likely because the RL agents are optimizing for higher 

rewards that consist of ITAEs for both control loops and lead 

to trade-offs between better effluent concentration setpoint 

tracking and better reactor’s hold-up setpoint tracking. Note 

that the ITAEs used to evaluate the reactor’s hold-up setpoint 

tracking performances were magnified by 1000 to match the 

magnitude difference between the effluent concentration and 

this output. One instance from each of the 1000 testing runs 

for catalyst deactivation and regeneration is also illustrated in 

Fig. 3 and Fig. 4, respectively.  

As shown in Fig. 3a and 4a, for conventional PID controllers 

in both time-varying scenarios, the time-varying uncertainty 

leads to non-stationary effluent concentration setpoint tracking 

performances. This behaviour also results in large offsets at the 

end of the simulation time; particularly for the catalyst 

regeneration time-varying scenario shown in Fig. 4a. Although 

some oscillations are observed at the beginning, RL agents in 

both scenarios are able to track and remain at the setpoint 

without offsets. On the other hand, for the reactor’s hold-up 

setpoint tracking depicted in Fig. 3b and 4b, the performances 

of the RL agents are slightly better than conventional PID 

controllers with faster responses and smaller ITAEs, as shown 

in Table 1. The superior performance of the RL agents is likely 
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due to the online adaptation of their PID parameters, as shown 

in Fig. 3c-d and 4c-d, while the parameters for conventional 

PID controllers stayed constant. 

 

Figure 3. Setpoint tracking performance and PID gains of the RL 

agent and conventional PID controllers under time-varying 

catalyst deactivation with 𝛼𝑐,𝑑 = 0.0034. 

 

Figure 4. Setpoint tracking performances and PID gains of the RL 

agent and conventional PID controllers under time-varying 

catalyst regeneration with 𝛼𝑐,𝑟 = −0.00334. 

5. CONCLUSIONS 

This study presented a mathematical framework of a deep RL-

based tuning strategy to solve the PID tuning problem of a 

class of nonlinear MIMO systems with time-varying 

uncertainty in the form of time-varying parameters with 

uncertain bounded coefficients. The key novelty of this work 

is the improvements to the IDDPG algorithm through the RL 

agent design. By designing our own state vector, action vector, 

and reward function, we can adapt our RL agent to achieve 

real-time adaptive MIMO PID tuning to track setpoints while 

addressing the time-varying uncertainty by incorporating it 

into the RL agent training. A case study was conducted on a 

nonlinear MIMO CSTR system with two time-varying catalyst 

scenarios: catalyst deactivation and regeneration. The results 

indicated that conventional PID controllers failed to address 

the time-varying uncertainty and led to non-stationary effluent 

concentration setpoint tracking performances with large 

ITAEs and offsets. Conversely, the RL agents were able to 

track the setpoints with small ITAEs, no offsets, and low 

variability under time-varying uncertainty. Future work 

includes a comparison of this framework to PID gain 

scheduling and testing the robustness of the method using 

more complex MIMO systems with time-varying uncertainty, 

especially for systems involving strong interactions between 

different PID control loops.  
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