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Abstract: The long term production planning for a large chemical production site, where 104
different chemical plants share raw materials, infrastructure (e.g., tank farm, filling stations)
and utilities (e.g. steam, electricity, technical gasses) might prove to be a challenging task. This
paper introduces a data driven approach to build a digital twin of a chemical production site to
aid the relevant decision makers in defining and evaluating the economic impact of a long term
(i.e. several months ahead) production planning. Each chemical plant and energy production
unit on site is represented by simple regression models relating the consumption of raw materials
and utilities to its products. The resulting system of algebraic equations has been inserted in an
optimization environment with the objective of maximizing the profit. In the optimization, also
the electricity and steam generation were introduced to obtain a global energy balance of the
production site. This combination resulted in a multi period Mixed-Integer Linear Programming
(MILP) problem. The effect of electricity price and external temperature on the optimization

results are also investigated.
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1. INTRODUCTION

In the last decades, the chemical industry has faced many
challenges: the increase in competitiveness and the re-
search for sustainability pushed many companies to fur-
ther optimize production and reduce emissions. One way
to reach this goal, for instance, is sharing facilities and
creating interconnected processes. Nevertheless, this ag-
gregation also increases the complexity of the production
sites and more effort and attention are required to schedule
and plan production.

This necessity arises mainly in large chemical produc-
tion sites, like the BASF site in Antwerp, Belgium. This
production site hosts 50 different chemical plants, owned
by 4 different companies. All of the plants share com-
mon electricity, steam, and all other utilities nets as well
as a wastewater treatment plant and all other logistic
infrastructure. This paper focuses on the possibility of
optimizing through a data driven digital twin two of the
production value chains present on site.

A chemical value chain can be defined as a group of
chemical plants interconnected between them, where the
finished product of one plant is the raw material used by
the next one. In our specific case, a value chain is a series
of chemical processes that transforms a raw material into
a valuable finished good. The focus is posed on stationary
operations and long-term predictions, excluding dynamic
and non-operating periods. In section 2 a brief state of the
art for the used statistical model and the MILP problem
is presented. Section 3 describes the investigated case
study. Section 4 is dedicated to the description of the

MILP problem and section 5 presents the obtained results.
Finally, section 6 discusses this work conclusions.

2. STATE OF THE ART
2.1 Statistical models

In this work only single and multiple regression models
have been considered. The main reason is to evaluate the
accuracy achieved with the most simple models. Moreover,
a lower model complexity will result in an easier solution
to maintain. The regression models chosen to find the
correlations between finished good and consumption of raw
materials and utilities can be represented in the form:

y=[f(X,B)+e (1)

where:

e y is the vector of the response variable.

e f is any function of the predictors matrix X and the
unknown parameters vector (3.

e ¢ is an n-by-1 vector of independent, identically dis-
tributed random disturbances.

To obtain these equations the software JMP SAS has been
used. The model parameters are estimated through a least
square minimization of the form:
n

> (i — folw))?

i=1
(Elster et al. (2015)). Where y represents the response
variable, while x is the predictor vector. The quality
of the obtained correlations can be statistically assessed
based on different parameters, in order of importance,



residuals’ distribution v, RMSE (root mean square error)
and R?. The residuals, defined as the difference between
the real values and the predicted ones, should be normally
distributed. The RMSE is a measure of the average model
error and it can be expressed as:

RMSE = \/ %2;;1( (2)

while R? indicates the fraction of the variance of the de-
pendent variable that can be explained by the independent
variables in the model and it has been obtained through
the formulas:
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2.2 Optimization

There are many articles in literature that address the topic
of value chain optimization for the chemical industry. Most
of them use continuous variables for process parameters,
and integer or binary values to indicate whether a plant is
operating or not. Therefore, the mixed-integer program-
ming (MIP) is the most used optimization method. The
MIP problem can be divided into two categories: mixed-
integer linear program (MILP) and mixed-integer non-
linear program (MINLP). A MILP is a problem with:

e linear objective function F(z), where x is the vector
of unknown variables;

e bounds and linear constraints;

e restrictions on some elements of x to have integer
values.

In mathematical terms it can be defined as:

z(intcon) are integers

Axx <b
1 F(2) subi <
min F(x) subject to Aeq = beg (3)
Ib<z<ub

where intcon represents the indexes of the integer vari-
ables, while 1b and ub the lower and upper bounds. A
MINLP presents the same mathematical structure, but
allows also non-linear equality and inequality constraints.
Examples of MILP optimizations of utilities and a bio-
fuel supply chain can be found respectively in Velasco-
Garcia et al. (2011) and Awudu and Zhang (2013). In
this article, a MILP optimization structure has also been
performed, since all resulting models are linear or have
been approximated to linear ones.

3. CASE STUDY

The case study represents two of the value chains present
at the BASF Antwerp site. A schematic representation can
be seen in Fig. 1, where:

e all plants used in the transformation of Product 1 are
represented in yellow;

e all plants used in the transformation of Product 2 are
coloured in green;

e Plant A and C process the raw materials to obtain
Product 1 and 2.

The plants that process Product 1 belong to the first value
chain, while the plants that transform Product 2 belong to
the second value chain. Due to reasons of confidentiality,
all names of chemicals and plants have been changed and
all numerical values have been normalized. Most of the
plants considered, from A to L, operate in continuous
mode. The raw materials entering into the value chains
are number from 1 to 6, while the final products and
the intermediates are called "Product X”, where X is a
number between 1 and 23. For the continuous plants, the
finished goods are represented in the figure, while for the
batch plants they are omitted. Tanks are present between
every plants and these have been numbered from 1 to
24 in Fig. 1. They have been introduced in the digital
twin to visualize situations of scarcity or overproduction
of a particular product. The last part of the digital twin
consists of the steam net and the steam generation units.
For the sake of simplicity these are not reported in Fig. 1.

3.1 Data

The data considered to build the statistical models for this
work goes from 1/11/2017 to 19/12/2019. The collected
observations consist of hourly average of the measurements
made by the flow meters on the site. Chemicals have been
divided into three groups:

e raw materials, these are all the reagents of the plant
under examination;

e utilities, considered as all the materials and energy
flows that are used for different purposes, like cooling,
heating or inertization of the reactors;

e final products, the chemicals obtained as a result of
the chemical transformation in a plant.

3.2 Data cleaning

The focus of modeling is to have a prediction of the con-
sumption of raw materials and utilities while the plant is in
stationary operating conditions. This implies that cleaning
the data is fundamental to obtain good correlations. The
adopted cleaning strategy consisted of the following steps:

e first of all, all the data intervals related to turnarounds
and shut-downs have been excluded. The method
used consisted in selecting a minimum hourly amount
of raw materials flowing in the plant as a discriminant
between producing and non-producing time intervals.

e then, the dynamic parts of the production periods
have been excluded. This task has been accomplished
by looking at the production stability and its varia-
tion from hour to hour. The objective consisted in
selecting only the time periods when there are no
big changes in production values. To do that, the
following formula was used:

Mat (i) = Material produced at time i (4)
Stability coef ficient(i) =

= Standard deviation(Mat(i), ..., Mat(i — 12))
(5)
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Fig. 1. High-level representation of the value chains

The standard deviation of the considered observation value
and the 12 preceding ones have been chosen to select the
stable operations. Therefore, it is possible to exclude the
non-stationary modes in a systematic way by selecting
an opportune limit value for this stability coefficient.
The stability coefficient limit is selected on the basis of
the sensor accuracy. In the intervals were the stability
coefficient value is lower than the limit, the production
is defined as stationary. In most of the plants, more than
80% of the raw data satisfied the criteria mentioned above
and it was retained for analysis.

3.8 Statistical models

The software JMP has been used to build the models. The
objective is to predict the amount of raw materials and
utilities needed to obtain the planned production volume.
In the representation of plant B in Fig. 1 the raw materials
we want to predict are the inlet flows consisting of Product
1 and Reagent 5. The utilities that has to be predicted in
the specific case of plant B are the steam at 16 bar and
the demineralized water entering the plant. The input for
the regressions models are the finished goods produced
by every single plant. The only additional parameter that
has been used is the external temperature, since this affects
utilities consumption for some plants. In Fig. 1 the finished
goods used as input are Product 11, 12, 13, 24, and 25.
At the end, it should be possible to predict raw materials
and utility consumption per ton of produced finished good
using only single and multiple regressions. One example
of multiple linear regression is the correlation between
reagent 1 in reactor A and the main products of that plant.
In Fig. 2 it is possible to notice the points used to train
the model, in black, and the excluded point corresponding
to failures and a major turnaround, in red. Therefore,
after having cleaned the data as described in the previous
chapter the obtained prediction expression is:

R1 = —0.0965+1.235% P3—0.09688+ P4+0.1103% P5 (6)

Where R1 is reagent 1 and P3, P4 and P5 are respectively
product 3, 4 and 5. The regression algorithm was able to
find a relation between the reagent and the products as it
can be seen both from the statistical parameters and Fig.
3. From a statistical point of view, it results:

R? =0.813 (7)
RMSE% = 6.24% (8)
The same approach has been used for all the other raw
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Fig. 2. Consumption of reagent 1 in the training period

materials, always trying to keep the models as simple
as possible. This avoids over fitting and increases model
robustness and maintainability.

The second step involves the modeling of the utilities used
by the different plants. The utilities considered for the
scope of this work are:

e steam, at multiple pressure levels, depending on the
needed temperature and the site infrastructure con-
straints;

demineralized water, used to produce steam, to clean
the reactors and as a coolant;

hydrogen, that is mainly used as a reagent;

nitrogen, used for inertization reasons;

electricity, needed for the mechanical equipment such

as pumps and compressors.
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Fig. 3. Correlation between reagent 1 and the finished
products present in the equation 6

The approach for modeling the utilities was the same
applied to the reagents. Particular care was placed in data
cleaning to exclude the peaks due to production stops and
equipment failures. In most of the cases the parameter R?
has shown lower values compared to the reagents. This is
mainly due to the fact that a less strict correlation exists
between energy and production.

3.4 Tank farm

Tanks have been introduced to calculate the amount of
materials stored on site. A simple material balance has
been used:

Tank level = Z inflow — Z out flow + previous level
9)
4. OPTIMIZATION STRUCTURE

The aim is to optimize the daily production to maximize
the profit over the selected period. The optimizer takes
into account the energy production cost as well as the
inventory cost. Different plants on site produce energy
through their exothermic reactions, while others are en-
dothermic processes and need energy to convert reagents
into products. The steam net does not allow for buffering
and it needs to be kept in balance at all times while its
production needs to be optimized by selecting the most
cost effective way to produce it. A penalty has been in-
troduce to keep inventories as low as possible. Most of
the complexity comes from the selection of the energy
production mix. Two different sources are available on site:

e 5 steam boilers, opeerating at different pressure levels;
e a Combined Cycle Gas Turbine (CCGT).

Lastly, there is the possibility to buy and sell the electricity
directly on the market.

4.1 Constraints and objective function

The optimization has been performed in MATLAB through
a multi period Mixed-Integer Linear Programming (MILP).
The selected time interval spans 49 days and the consid-
ered variables are:

e Raw materials used in the reactions;
e Steam consumed by the plants;

e Steam produced by reactor A, boilers and CCGT;

e Electricity generated by the CCGT, bought and sold
in the market;

e Tanks, to store the raw materials before their usage.

The purpose of the optimizer is to maximize profit. In this
work several terms are summed into a unique objective
function. However, a multi-objective approach might be
considered to better understand the possible trade-offs ex-
isting between minimizing energy consumption or emission
while still maximizing production (Vallerio et al. (2015);
Nimmegeers et al. (2019)). Every variable has bound-
aries based on the physical limitations of the respective
unit. Moreover, the production is constrained to meet the
planned amount at the end of the optimization period.
The main source of steam is the combustion of natural gas
in the boilers. They can produce steam at 16 bar pressure
with a conversion:

Pyteam = 0.01435/0.011 * NG (10)

Where Pgteqrm is the amount of steam produced (Ton/day)
and NG is the amount of natural gas (Nm3/day). The
CCGT is able to produce electricity as well as steam and

it can operate at 5 different operating modes between 2820
and 4560 MWh. The conversion equation is:

Ep= NG 0.60 (11)

Where Ep is the electricity produced (MW) by the CCGT.
Additionally, it is also possible to buy and sell electricity
from the energy market. The prices for buying and selling
electricity have been taken from the historical data of day-
ahead Belgium market (see Fig. 4).

Finally for each ton of steam produced by the CCGT,
the electricity production is reduced by 0.25 MW. All this
information is used to build the global objective function
that is shown here below:

For i = 1:n days

CEb(i) = Eb(i) x PEb(1)

CEs(i) = Es(i) * PES(i)

C_CCGT(i) = 2500 * Switch(i)

+ Ep(i)/0.60 x PNG

+ 250 * Ep(i) /380
n days
CS= Y (NG(n)*PNG)
n=1

n tank n days

CI = Z ( Z (tank level(m,n))

m=1 n=1
n days (12)
CE = Z (Price CCGT(n))
n=1
n days
+ > (CEb(n) — CEs(n))

n RM n days

CRM = Y (> (RM(m,n)* PRM(m))

n=1
n prod n days

Revenue = Z ( Z (P(m,n) « PP(m))

m=1 n=1

Profit = Revenue — CRM — CE —CI —CS



Where CEb, CEs represent the cost, Eb and Es, the
amount, PEb and PEs the prices for electricity bought and
sold. C_CCGT is the cost related to the operation of the
CCGT. CE is the total cost for electricity. CS is the cost
associated with the steam production. PNG is the price
for natural gas. CI is the cost related to inventory. CRM
is the cost related to the consumption of raw material, RM
and PRM are the amount and the price of the respective
raw material. P and PP are the amount and price of the
specific product.The optimization was solved in MATLAB
through the algorithm ”intlinprog”, more details on the
Branch and Bound procedure can be found in Savelsbergh
(1994) and Wolsey (1998).

Four different optimization periods have been considered.
These were selected to estimate the effect of electricity
prices and external temperature on the obtained solution
(see Fig. 4). In particular, the four periods are reported in
Table 1. Every performed optimization has been repeated

time electricity price | external temperature
Period 1 | Jan/18 middle low
Period 2 | Jun/18 middle high
Period 3 | Oct/18 high middle
Period 4 | Feb/20 low middle

Table 1. Different investigated periods

twice by using two different strategies:

e Global scheme: the optimization spans over the whole
period of 49 days, with a final total production
constraint;

o Weekly scheme: the optimization is performed per
week with weekly production constraint.

The weekly scheme requires a reduced amount of compu-
tational time. However, it also presents a reduced number
of degrees of freedom making it more difficult for the
optimizer to adapt to unexpected production losses.
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Fig. 4. Electricity price and external temperature trend
from 1/11/2017 to 8/04/2020. in light blue the inves-
tigated periods 1 to 4.

5. RESULTS
5.1 Global and weekly optimization

As we can see in Fig. 5 for Period 1 the internal production
of electricity is preferred almost every day, due to the
high cost of external energy in that period. This does not
happen in Period 4 (Fig. 6), when it was more convenient
to buy electricity from the market than producing it
internally. In this case, the amount of steam produced
by the CCGT is significantly smaller than the amount

obtained by the boilers. The boilers production for all the
intervals can be seen in Fig. 7. The minimum produced
amount is 480 tons/day. This is the minimum value to keep
the boilers in function and ready to provide the necessary
heat in extraordinary situations. The differences between
the different periods mostly depend on the electricity price.
As it can be seen in Figure 7, the boilers are mostly used
in period 3 and 4. However, the reason behind it is quite
different. In period 4 this is due to low electricity price that
make inefficient to activate the CCGT, While in period 3
the electricty price is so high that the CCGT is used to
produce electricity and sell it on the market. For periods
1 and 2, the boilers are at their minimum capacity and all
the remaining needed energy, in the forms of electricity
and steam, is provided by the CCGT. Table 2 reports
the results of the optimization for all the scenarios. The
optimization is able to meet the predefined production
planning in all investigated periods. The difference in
profit between the different periods is mainly due to the
energy cost. In particular, a trend can be spotted. In fact,
the higher the electricity price, the higher the global profit.
The difference between the global and weekly optimization
scheme comes from the higher degrees of freedom available
in the global scheme.

Period global optimization | weekly optimization
January 2018 191,00 190,96
June 2018 191,61 191,59
October 2018 193,61 193,58
February 2020 191,10 191,12

Table 2. Profit (€ Mio) result for every interval
of time and every optimization strategy
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Fig. 5. Electricity produced and sold in Period 1. The red
line represents the total amount of energy produced
from the CCGT, the green one the part not trans-
formed into steam. Blue and violet line are, respec-
tively, the electricity sold and bought on the market
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Fig. 6. Electricity produced and sold in Period 4.
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Fig. 7. Steam produced by the boilers in the different
periods

5.2 Optimization with planned and unplanned shutdowns

The impact of a planned and an unplanned shutdown is
discussed in this section. Every period has been reeval-
uated twice. The difference between the results obtained
with the global and weekly scheme are more significant
in this situation. The shutdowns have been simulated by
switching off plant K in Fig. 1. Two shutdowns have been
imposed within the same period:

e in the first week, to see the effects of an unexpected
failure. The lost production should be recovered in
the remaining time;

e in the fifth week, to show the effect of a planned
shutdown.

Every period has been optimized twice: once with the
global scheme and once with the weekly one. The available
tank volume plays an important role in both. In particular,
it can be noticed that bigger tanks, 14% volume increase,
are needed if the optimization is performed with the weekly
scheme. This is again due to the reduced numbers of
degrees of freedom available to the optimizer. This limits
the possibilities to compensate for the lost production
volumes. Fig. 8 shows the level of the tanks for Period 2.
The tanks chosen are the ones corresponding to tank 1 and
5 in Fig. 1. This figure confirms the necessity of smaller
tanks in the global optimization. In table 3 it is possible
to see the outcome of every performed optimization.

Period global optimization | weekly optimization
January 2018 163,85 162,36
June 2018 164,62 163,12
October 2018 166,61 165,09
February 2020 163,88 162,47

Table 3. Profit (€ Mio) result for every interval
of time and every optimization strategy in the
case of a plant shutdown

6. CONCLUSION

The objective of this work was to investigate the possibility
to build a data-driven digital twin of a chemical production
site based on simple regression model and use this to opti-
mize the profit margin for long term production planning.
The use of a Mixed Linear Integer Programming algorithm
in many different situations has given the expected results.
Both in normal operations and in presence of shutdowns it
was possible to match the energy production with its con-
sumption in the various processes. Finally, the difference
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Fig. 8. Tank 1 and 5 level for June 2018 optimization.

between different lengths of the optimization interval has
been tested. Shortening the time period is advantageous to
reduce the computational time. However, this shortening
can push the optimizer to find a lower profit value due
to a reduction in available degrees of freedom. In the
future, a continuous attention will be necessary to keep
the models adherent to the modelled production processes.
To ensure this and avoid potential model drifts and/or
bias an automated control system, such as a Shewart’s
control chart should be implemented. A presentation of
this method with a practical example can be found in
Hossain and Masud (2016).
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