Darvehei, P., Bahri, P.A., and Moheimani, N.R. (2018). Model development for the growth of microalgae: A review. Renewable and Sustainable Energy Reviews, 97, 233-258. Deruyck, B., Nguyen, K.H.T., Decaestecker, E., and Muylaert, K. (2019). Modeling the impact of rotifer contamination on microalgal production in open pond, photobioreactor and thin layer cultivation systems. Algal Research, 38, 101398. Dhooge, A., Govaerts, W., and Kuznetsov, Y.A. (2003). Matcont: a matlab package for numerical bifurcation analysis of odes. ACM Transactions on Mathematical Software (TOMS), 29(2), 141-164. Huisman, J., Matthijs, H.C., Visser, P.M., Balke, H., Sigon, C.A., Passarge, J., Weissing, F.J., and Mur, L.R. (2002). Principles of the light-limited chemostat: theory and ecological applications. Antonie van Leeuwenhoek, 81(1-4), 117-133. Hwang, T.W. (1999). Uniqueness of the limit cycle for gause-type predator{prey systems. Journal of mathe- matical analysis and applications, 238(1), 179-195. Mairet, F., Mu~noz-Tamayo, R., and Bernard, O. (2015). Adaptive control of light attenuation for optimizing microalgae production. Journal of process Control, 30, 117-124. Martínez, C., Bernard, O., and Mairet, F. (2018a). Maximizing microalgae productivity in a light-limited chemostat. IFAC-PapersOnLine, 51(2), 735-740. Martínez, C., Mairet, F., and Bernard, O. (2018b). Theory of turbid microalgae cultures. Journal of theoretical biology, 456, 190-200. Martínez, C., Mairet, F., and Bernard, O. (2020). Dynam-ics of the periodically forced light-limited droop model.Journal of Differential Equations, 269(4), 3890–3913. McBride, R.C., Lopez, S., Meenach, C., Burnett, M., Lee, P.A., Nohilly, F., and Behnke, C. (2014). Contamination Management in Low Cost Open Algae Ponds for Biofuels Production. Industrial Biotechnology, 10(3), 221-227. Publisher: Mary Ann Liebert, Inc., publishers. McNair, J.N., Boraas, M.E., and Seale, D.B. (1998). Size structure dynamics of the rotifer chemostat: a simple physiologically structured model. In E.Wurdak, R.Wallace, and H. Segers (eds.), Rotifera VIII: A Comparative Approach, Developments in Hydrobiology, 469-476. Springer Netherlands, Dordrecht. Mobin, S. and Alam, F. (2017). Some Promising Microalgal Species for Commercial Applications: A review. Energy Procedia, 110, 510-517. Montemezzani, V., Duggan, I.C., Hogg, I.D., and Craggs, R.J. (2015). A review of potential methods for zooplankton control in wastewater treatment High Rate Algal Ponds and algal production raceways. Algal Research, 11, 211-226. Montemezzani, V., Duggan, I.C., Hogg, I.D., and Craggs, R.J. (2016). Zooplankton community in uence on seasonal performance and microalgal dominance in wastewater treatment High Rate Algal Ponds. Algal Research, 17, 168-184. Moreno-Garrido, I. and Canavate, J.P. (2001). Assessing chemical compounds for controlling predator ciliates in outdoor mass cultures of the green algae Dunaliella salina. Aquacultural Engineering, 24(2), 107-114. Perko, L. (2013). Differential equations and dynamical systems, volume 7. Springer Science & Business Media. Schade, S. and Meier, T. (2019). A comparative analysis of the environmental impacts of cultivating microalgae in di erent production systems and climatic zones: A systematic review and meta-analysis. Algal Research, 40, 101485. Tang, H., Chen, M., Simon Ng, K., and Salley, S.O. (2012). Continuous microalgae cultivation in a photobioreactor. Biotechnology and bioengineering, 109(10), 2468-2474.