Almotiri, J., Elleithy, K. and Elleithy, A. (2017)' Comparison of autoencoder and Principal Component Analysis followed by neural network for e-learning using handwritten recognition', in 2017 IEEE Long Island Systems, Applications and Technology Conference, LISAT 2017. doi: 10.1109/LISAT.2017.8001963. Baratloo, A. et al. (2015) 'Part 1: Simple Definition and Calculation of Accuracy, Sensitivity and Specificity.', Emergency (Tehran, Iran). doi: 10.22037/emergency.v3i2.8154. Bristol, E. H. (1966) 'On a new measure of interaction for multivariable process control', IEEE Transactions on Automatic Control. doi: 10.1109/TAC.1966.1098266. Charte, D. et al. (2018) 'A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines', Information Fusion. doi: 10.1016/j.inffus.2017.12.007. Cong, S. and Liang, Y. (2009) 'PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems', IEEE Transactions on Industrial Electronics. doi: 10.1109/TIE.2009.2018433. Cybenko, G. (1989) 'Approximation by superpositions of a sigmoidal function', Mathematics of Control, Signals, and Systems. doi: 10.1007/BF02551274. Davis, J. and Goadrich, M. (2006) 'The relationship between precision-recall and ROC curves', in ACM International Conference Proceeding Series. doi: 10.1145/1143844.1143874. Foelkel, C. (2007) ‘GESTÃO ECOEFICIENTE DOS RESÍDUOS FLORESTAIS LENHOSOS DA EUCALIPTOCULTURA’, Eucalyptus Online Book & Newsletter. Hoffman, J., Roberts, D. A. and Yaida, S. (2019) 'Robust Learning with Jacobian Regularization'. Available at: http://arxiv.org/abs/1908.02729. Hornik, K., Stinchcombe, M. and White, H. (1989) 'Multilayer feedforward networks are universal approximators', Neural Networks. doi: 10.1016/0893-6080(89)90020-8. Imtiaz, S. A. et al. (2007) 'Detection, diagnosis and root cause analysis of sheet-break in a pulp and paper mill with economic impact analysis', Canadian Journal of Chemical Engineering. doi: 10.1002/cjce.5450850413. Koehrsen, W. (2018) Beyond Accuracy: Precision and Recall. Available at: https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c (Accessed: 16 November 2020). Martinez-Murcia, F. J. et al. (2019) 'Deep Convolutional Autoencoders vs PCA in a Highly-Unbalanced Parkinson's Disease Dataset: A DaTSCAN Study', in Advances in Intelligent Systems and Computing. doi: 10.1007/978-3-319-94120-2_5. Ranjan, C. et al. (2018) 'Dataset: Rare Event Classification in Multivariate Time Series'. Available at: http://arxiv.org/abs/1809.10717. Ranjan, C. (2019) Extreme Rare Event Classification using Autoencoders in Keras. Available at: https://towardsdatascience.com/extreme-rare-event-classification-using-autoencoders-in-keras-a565b386f098. Ranzan, L., Trierweiler, L. F. and Trierweiler, J. O. (2020) 'Prediction of sulfur content in diesel fuel using fluorescence spectroscopy and a hybrid ant colony - Tabu Search algorithm with polynomial bases expansion', Chemometrics and Intelligent Laboratory Systems. doi: 10.1016/j.chemolab.2020.104161. Sala, D. A. et al. (2019) 'Multivariate Time Series for Data-Driven Endpoint Prediction in the Basic Oxygen Furnace', in Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018. doi: 10.1109/ICMLA.2018.00231. Salgado, M. E. and Conley, A. (2004) 'MIMO interaction measure and controller structure selection', International Journal of Control. doi: 10.1080/0020717042000197631. Suschnigg, J. et al. (2020) 'Exploration of anomalies in cyclic multivariate industrial time series data for condition monitoring', in CEUR Workshop Proceedings. Zhang, Y. et al. (2007) 'Recurrent neural networks-based multivariable system PID predictive control', Frontiers of Electrical and Electronic Engineering in China. doi: 10.1007/s11460-007-0037-4.