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Abstract: This paper focuses on mixing strategies and designing shape of the bottom
topographies to enhance the growth of the microalgae in raceway ponds. A physical-biological
coupled model is used to describe the growth of the algae. A simple model of a mixing device
such as a paddle wheel is also considered. The complete process model was then included in
an optimization problem associated with the maximization of the biomass production. The
results show that non-trivial topographies can be coupled with some specific mixing strategies
to improve the microalgal productivity.

Keywords: Industrial biotechnology, Parametric optimization, Discrete optimization,
Hydrodynamics, Han model, Microalgal raceway

1. INTRODUCTION

Microalgae are photosynthetic organisms whose potential
has been proven in the last decade for several biotechno-
logical applications (e.g. Chisti, 2007). They can be cul-
tivated industrially for cosmetics, pharmaceuticals, food
complements and green energy applications (Wijffels and
Barbosa, 2010). These micro-organisms can be massively
cultivated in closed (e.g. Perner et al., 2003) or open
photobioreactors. According to the applications, the light
can be artificial (for high added value products) or natural.

In this paper, we focus on the cultivation of the algae in a
raceway pond. The water is mixed and set in motion in this
circular basin by means of a paddle wheel (Chiaramonti
et al., 2013). Studies have shown that the topographies can
have an impact on the growth rate of the algae (Bernard
et al., 2021a), whereas mixing the microalgae guarantees
that each cell have regularly access to light and necessary
nutrients to growth (Demory et al., 2018). In this paper, we
extend the study of Bernard et al. (2021a) by investigat-
ing the optimal combinations between mixing strategies
and bottom topographies to enhance algal productivity.
We show that non trivial topographies can be obtained
associated with some specific mixing strategies.

The paper is organized as follows. In Section 2, we de-
scribe the hydrodynamical, the biological and the mixing
models and we define the coupled model. Afterwards, we
present the optimization problem together with numerical
optimization procedure in two frameworks. Eventually, we
show some numerical tests to illustrate our approach and

study the influence of the topography, depth of the raceway
and mixing strategy in the optimization process.

2. RACEWAY MODELING

The raceway system can be described by a coupling
between the hydrodynamics and the dynamics of the
photosystems in the algae. The raceway is set in motion
by a paddle wheel mixing the algae and modifying their
depth and therefore the light flux that they see.

2.1 Shallow water equations

We model the hydrodynamics of our system by the shal-
low water equations, which is derived from the free sur-
face incompressible Navier-Stokes equations (see for in-
stance Gerbeau and Perthame. (2001)). More precisely, we
consider the smooth steady state solutions of the shallow
water equations in a laminar regime, which are governed
by the following partial differential equations:

∂x(hu) = 0, ∂x(hu2 + g
h2

2
) = −gh∂xzb,

where h stands for the water elevation, u represents the
horizontal averaged velocity of the water, the constant
g is the gravitational acceleration, and zb defines the
topography. The free surface η is defined by η := h +
zb and the averaged discharge Q = hu. A schematic
representation of this system is given in Fig. 1.

The z axis represents the vertical direction and the x
axis represents the horizontal direction. Besides, L stands
for the length of one lap of the raceway pond and Is
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Fig. 1. Representation of the hydrodynamic model with an
example of mixing device (P ). Here, P corresponds to
the cyclic permutation σ = (1 2 3 4).

represents the light intensity at the free surface (assumed
to be constant).

The Froude number for the steady state is defined by
Fr = u/

√
gh. The situation Fr < 1 corresponds to

the subcritical case (i.e. the flow regime is fluvial) while
Fr > 1 is to the supercritical case (i.e. the flow regime is
torrential). In the following studies, we limit ourselves to
the subcritical case. Following the procedure from Bernard
et al. (2021a), the topography can be computed solved by:

zb =
M0

g
− Q2

0

2gh2
− h, (1)

where Q0 and M0 are two positive constants.

2.2 Lagrangian trajectories and light intensity

Incompressibility and a kinematic condition at bottom
can then be used to obtain the following equation of the
Lagrangian trajectory of the algae (Equation (12)-(15)
Bernard et al., 2021a).

z(x) = η(x) +
h(x)

h(0)
(z(0)− η(0)), (2)

where z(0) is the initial position of the algae.

To obtain the light intensity I at depth z, we use the Beer-
Lambert law to describe the light attenuation:

I(x, z) := Is exp
(
− ε(η(x)− z)

)
, (3)

where ε is the extinction coefficient. Using (2) in (3), we
find the light intensity captured by the algae following the
trajectories z(x) in one lap of the raceway

I(x, z) = Is exp
(
− εh(x)

h(0)
(η(0)− z(0))

)
.

Given initial conditions h(0), zb(0), then η(0) = h(0) +
zb(0), we see that computing I on a trajectory only
requires to know the initial position z(0) and the water
elevation h(x) which is obtained by solving (1).

2.3 Han model

The dynamics of the light harvesting complexes in the
chloroplasts is controlled by the amount of light perceived
by the algal cells. They can be described by the Han
model (Han., 2001), in which the reaction centers are

assumed to have three different states: open and ready to
harvest a photon (A), closed while processing the absorbed
photon energy (B), or inhibited if several photons have
been absorbed simultaneously leading to an excess of
energy (C). The evolution of the state A,B,C satisfies
the following dynamical system

dA

dt
= −σIA+ B

τ ,

dB

dt
= σIA− B

τ + krC − kdσIB,
dC

dt
= −krC + kdσIB,

where A,B,C are the relative frequencies of the three
possible states which satisfy A+B+C = 1, the coefficients
σ, τ , kr and kd represent the specific photon absorption,
the turnover rate, the photosystem repair rate and the
damage rate, respectively. As shown in Lamare et al.
(2019), one can use a fast-slow approximation and singular
perturbation theory to reduce this system to a single
evolution equation:

dC

dt
= −α(I)C + β(I), (4)

where β(I) = kdτ
(σI)2

τσI+1 and α(I) = β(I) + kr. Then

following Bernard et al. (2021a), we obtain a time-free
reformulation of (4), namely

dC

dx
=
(
− α(I)C + β(I)

) h
Q0

, (5)

where all the functions on the right-hand side only depend
on x. The net specific growth rate is then obtained by
balancing photosynthesis and respiration, which gives

µ(C, I) := γ(I)C + ζ(I), (6)

where γ(I) = kσI
τσI+1 and ζ(I) = γ(I) − R. Here k stands

for a factor that links received energy and growth rate.
The term R represents the respiration rate. The average
net specific growth rate over the domain is then defined
from (6) by

µ̄ :=
1

V

∫ L

0

∫ η

zb

µ
(
C(x, z), I(x, z)

)
dzdx. (7)

This will be the principle function of our following studies.

Remark 1. The dynamic of the biomass concentration is

derived from (6):
dX

dt
= µ̄X−DX, where D is the dilution

rate. The extinction coefficient ε depends on X as follows.
The system is perfectly mixed, then the concentration is
homogeneous so ε is a constant independent of space. In
general, the extinction coefficient ε is an affine function of
the biomass X (see Mart́ınez et al. (2018))

ε(X) = α0X + α1, (8)

where α0 > 0 stands for the specific light extinction
coefficient of the microalgae specie and α1 defines the
background turbidity that summarizes the light absorption
and diffusion due to all non-microalgae components.

We assume that the algal biomass X in the raceway is
controlled at a concentration which meets the so-called
compensation condition (see Masci et al. (2010); Grognard
et al. (2014)). This condition means that photosynthesis
equilibrates respiration in the darkest layer of the raceway.
In other terms, at steady-state, the growth rate µ at

the (average) bottom depth z̄b is 0, i.e., −γ(Iz̄b)
β(Iz̄b )

α(Iz̄b ) +



ζ(Iz̄b) = 0. Solving the above equation provides a value
of Iz̄b thus of the extinction coefficient ε(X), and finally
of the biomass concentration X. In the sequel we assume
that an appropriate control strategy maintains the biomass
around this value by playing on the dilution rate D.

2.4 Vertical discretization of the system

In order to compute numerically (7), let us consider a
uniform vertical discretization of the initial position z(0)

for Nz cells: zn(0) = η(0)− n− 1
2

Nz
h(0), n = 1, . . . , Nz. From

(2), we obtain zn(x) − zn+1(x) = 1
Nz
h(x), n = 1, . . . , Nz,

meaning that the cell distribution remains uniform along
the trajectories. To simplify notations, we write In(x)
instead of I(x, zn) hereafter.

Let Cn(x) (resp. In(x)) the photo-inhibition state (resp.
the light intensity) associated with the trajectories zn(x).
Then the semi-discrete average net specific growth rate
of (7) can be defined by

µ̄∆ :=
1

V Nz

Nz∑
n=1

∫ L

0

µ(Cn(x), In(x))h(x)dx. (9)

2.5 Paddle wheel modeling

Recent studies have shown that the paddle wheel played
a key role in a raceway ponds system Chiaramonti et al.
(2013); Demory et al. (2018), where the paddle wheel set
this hydrodynamic-biologic coupling system in motion. At
the same time, it modifies the elevation of the algae passing
through it, and thus giving successively access to light to
all the population. This mixing device has been studied
in Bernard et al. (2021b), where a flat topography has
been considered and the mixing procedure is assumed to be
perfect, meaning that at each new lap, the algae at depth
zn(0) are entirely transferred into the position zσ(n)(0)
when passing through the mixing device. In the current
study, we still assume that we can design a mixing setup
achieving an ideal rearrangement of trajectories, and we
consider the case when the topography is no longer flat.

We denote by P the set of permutation matrices of size
Nz×Nz and by SNz

the associated set of permutations of
Nz elements. This model is depicted schematically on an
example in Fig. 1.

2.6 Periodic regime

Recall that L is the length of one lap of the raceway
pond. We assume that the state C is KL-periodic in
the sense that after K times of passing the device (P ),
CK(0) = C(0). A natural choice for K is the order of the
permutation P .

Following arguments similar to that in (Proposition 1,
Lemma 1 Bernard et al., 2021b), it can be proved that
if the system is KL-periodic, then it is L-periodic. Hence,
the average growth rate µ̄ for K laps equals to the av-
erage growth rate µ̄ for a single lap. This will help us in
simplifying the formulation of the optimization problem
considered in the next section. In addition, the computa-
tions to solve the optimization problem will be reduced,
since the CPU time required to assess the productivity
gain of a permutation will not depend on its order.

Remark 2. In the setting presented in Bernard et al.
(2021b), when the system is assumed to be periodic
C(0), hence C depends on the permutation matrix P . In
the current study, the state C will also depend on the
permutation matrix P that we denote CP hereafter.

3. OPTIMIZATION

In this section, we define the optimization problem as-
sociated with our biological-hydrodynamical-permutation
model. As mentioned in Section 2.1, a given smooth topog-
raphy zb corresponds to a unique water elevation h under
the assumption that flow remains in a subcritical regime.
On the other hand, since we consider a 1D framework, the

volume of our system is simply given by V =
∫ L

0
h(x)dx.

Since this quantity plays an important role in raceway
design, and need to be easily handled. Therefore, we choose
to parameterize the water elevation h. Given an optimal
parameter a∗, the associated optimal topography can be
determined by means of (1). An example of parameteriza-
tion consists in writing h as a truncated Fourier series

h(x, a) = a0 +

M∑
m=1

am sin(2mπ
x

L
), (10)

such parameterization allows us to control the volume
since V = a0L.

For simplicity of notation, we omit x in the notation and
rather denote explicitly that the functions depend on a.

3.1 Optimization problem for constant reactor volume

In this section, we assume that the volume of the reactor
is constant. Such situation can be obtained, e.g., by using
the parameterization (10) with a fixed a0. Consider then a
vector a := [a1, · · · , aM ] ∈ RM , which will be the variable
to be optimized. The objective function is then defined
from (9) by

µ̄P∆(a) =
1

V Nz

Nz∑
n=1

∫ L

0

µ(CPn , In(a))h(a)dx, (11)

where CPn satisfies the following parameterized version
of (5) with a periodic condition dCPn

dx
=
(
− α(I(a))C + β(I(a))

)h(a)
Q0

,

PCPn (L) = CPn (0).
(12)

Our optimization problem then reads:

Find a permutation matrix Pmax and a parameter vector
a∗ solving the maximization problem:

max
P∈P

max
a∈RM

µ̄P∆(a).

3.2 Optimization procedure for constant reactor volume

For a given permutation matrix P ∈ P, the Lagrangian
of (11) can then be written by

LP (C, p, a)

=
1

V Nz

Nz∑
n=1

∫ L

0

(
− γ(In(a))CPn + ζ(In(a))

)
h(a)dx

−
Nz∑
n=1

∫ L

0

pPn

(dCPn
dx

+
(
α(In(a))CPn − β(In(a))

)h(a)

Q0

)
dx,



where pPn is the Lagrange multiplier associated with the
constraint (12).

The optimality system is obtained by cancelling all the
partial derivatives of LP . Differentiating LP with re-
spect to pPn and equating the resulting expression to zero

gives (12). Integrating the terms
∫
pPnC

P
n
′
dx on the inter-

val [0, L] by parts enables to differentiate LP with respect
to CPn and CPn (L). Equating the result to zeros gives rise
to  dpPn

dx
− pPnα(In(a))h(a)

Q0
− h(a)

V Nz
γ(In(a)) = 0

pPn (L)− pPn (0)P = 0.
(13)

Given a vector a, let us still denote by CPn , p
P
n the corre-

sponding solutions of (12) and (13). The gradient ∇µ̄P∆(a)
is obtained by ∇µ̄P∆(a) = ∂aLP , where

∂aLP =
1

V Nz

Nz∑
n=1

∫ L

0

(
−γ′(In(a))CPn

+ζ ′(In(a))
)
h(a)∂aIn(a)dx

+
1

V Nz

Nz∑
n=1

∫ L

0

(
− γ(In(a))CPn + ζ(In(a))

)
∂ah(a)dx

+

Nz∑
n=1

∫ L

0

pPn

(
− α′(In(a))CPn + β′(In(a))

)h(a)

Q0
∂aIn(a)dx

+

Nz∑
n=1

∫ L

0

pPn

(
− α(In(a))CPn + β(In(a))

)∂ah(a)

Q0
dx.

3.3 Optimization problem for variable reactor volume

In this section, we focus on the case where the reactor vol-
ume can also vary. As we have mentioned in Remark 1, we
apply an extra assumption to determine X as a function of
the volume. Therefore, we apply the parameterization (10)
and follow the computations in Bernard et al. (2021b) to
determine X. Such parameterization allows us to control
the biomass X and the volume of the system V by using an
extra parameter a0. Since both of these two quantities vary
with the parameter a0, maximizing areal productivity is a
more relevant target. For a given biomass concentration
X, the productivity per unit of surface is defined by:

Π := µ̄X
V

S
, (14)

where S presents the ground surface of the raceway pond.
From (Bernard et al., 2021a, Appendix C), we have X =
α2

a0
− α3 with α2 = 1

α0
ln( IsIz̄b

) and α3 = α1

α0
, where α0, α1

are given in (8).

Consider the extend parameter vector ã := [a0, a] ∈
RM+1. From (14) and (11), the objective function is given
by

ΠP
∆(ã) :=

α2

a0
− α3

LNz

Nz∑
n=1

∫ L

0

µ(CPn , In(a))h(a)dx. (15)

The corresponding optimization problem reads:

Find a permutation matrix Pmax and a parameter vector
ã∗ solving the maximization problem:

max
P∈P

max
ã∈RM+1

ΠP
∆(ã).

3.4 Optimization procedure for variable reactor volume

Let us denote by L̃P the Lagrangian associated to (15).
We follow the same optimization procedure presented in
Section 3.2. Note that an extra element appears in this
gradient, which is the partial derivative of L̃P with respect
to the variable a0. More precisely, we have ∇ΠP

∆(ã) =

[∂a0
L̃P , ∂aL̃P ] where

∂a0
L̃P =

α2

a0
− α3

LNz

Nz∑
n=1

∫ L

0

(
−γ′(In(ã))CPn

+ζ ′(In(ã))
)
h(ã)∂a0

In(ã)dx

+
α2

a0
− α3

LNz

Nz∑
n=1

∫ L

0

(
−γ′(In(ã))CPn

+ζ ′(In(ã))
)
∂a0

h(ã)dx

−
α2

a2
0

LNz

Nz∑
n=1

∫ L

0

(
− γ(In(ã))CPn + ζ(In(ã))

)
h(ã)dx

+

Nz∑
n=1

∫ L

0

pPn

(
−α′(In(ã))CPn

+β′(In(ã))
)h(ã)

Q0
∂a0

In(ã)dx

+

Nz∑
n=1

∫ L

0

pPn

(
− α(In(ã))CPn + β(In(ã))

)∂a0
h(ã)

Q0
dx,

and ∂aL̃P is similar to ∂aLP .

4. NUMERICAL RESULTS

In this section, we present some numerical results derived
from the optimization procedure presented in the previ-
ous section. Note that for a given vertical discretization
number Nz, we need to test all the permutation matrices
in the set P, which means Nz! possible cases. Since an
optimization problem must be solved for each permutation
matrix the problem is highly computational demanding
and we consider in the following tests Nz = 7 for which
the problem is solvable in reasonable time. Note also that
for the Fourier truncated number, the larger M , the less
valid is our hydrodynamic model, see Section 2.1, where
a smooth topography is assumed to guarantee a laminar
regime. Hence, limit situations where M → +∞ are not
considered and M = 5 in what follows. Regarding the
parameterization of h, we use truncated Fourier series
presented in (10).

4.1 Numerical solver

We introduce a supplementary space discretization with
respect to x to solve numerically our optimization problem.
Let us take a space discretization number Nx, set ∆x =
L/Nx and xnx = nx∆x for nx = 0, . . . , Nx. We choose
to apply the Heun’s scheme to compute CPn via (12).
Following a first-discretize-then-optimize strategy, we get
that the Lagrange multiplier pPn is also computed by a
Heun’s type scheme via (13). We use the Gradient-based
algorithm to solve the optimization problem with the
subcritical constraint.



4.2 Parameter for the models

The spatial discretization number is set to Nx = 1001
points such that the convergence of the numerical scheme
has been ensured, and we take the averaged discharge
Q0 = 0.04 m2 · s−1, and zb(0) = −0.4 m to stay in standard
ranges for a raceway pond. The free-fall acceleration is
set to be g = 9.81 m · s−2. All the numerical parameters
values for Han’s model are taken from Grenier et al. (2020).
For fixed volume, we assume that only 1% of light can be
captured by the cells at the bottom of the raceway, under
our parameterization, the light extinction coefficient ε can
be computed by ε = (1/a0) ln(1/1%). For varying volume,
the specific light extinction coefficient of the microalgae
specie α0 = 0.2 m2 · gC and the background turbidity
coefficient α1 = 10 m−1, these are taken from Mart́ınez
et al. (2018). Besides, Is = 2000µmol ·m−2 s−1 which
corresponds to the order of magnitude of the maximum
light intensity in summer in the south of France.

4.3 Numerical tests

We present some results for both constant and non con-
stant volume. We will show the optimal permutation ma-
trices and the associated shape of the topographies for
these two frameworks and compare the gain with a stan-
dard system.

Constant volume The first test is dedicated to study
the optimal permutation matrix and the associated shape
of the topography for constant volume. To evaluate the
efficiency of the corresponding mixing strategy, define:

r1 :=
µ̄Pmax

∆ (a∗)− µ̄Pmax

∆ (0)

µ̄Pmax

∆ (0)
, r2 :=

µ̄Pmax

∆ (a∗)− µ̄INz

∆ (0)

µ̄
INz

∆ (0)
.

(16)
Here r1 defines the gain of the optimal permutation
strategy with the optimal topography compare to the
optimal permutation strategy with a flat topography, and
r2 defines the gain of the optimal permutation strategy
with the optimal topography compare to no permutation
strategy with a flat topography. We fix the volume related
parameter a0(= h(0; a)) = 0.4 m to stay in a standard
raceway pond range. The initial guess of the vector a
is set to be 0, which corresponds to a flat topography.
Let us consider two raceway pond length L = 100 m
and L = 1 m respectively. The optimal matrices Pmax

for different L are denoted by PLmax and given in (17)
with the associated optimal topographies presented in
Fig. 2. A non flat topography associated with a non trivial
permutation matrix has been observed. In particular, these
optimal matrices corresponds to the optimal matrices
obtained with a flat topography under the same parameter
settings (Bernard et al., 2021b, Equation 11,Equation 13).
The two ratios defined in (16) are r1 = 0.148%, r2 =
1.070% and r1 = 0.001% r2 = 3.453% respectively.

P 100
max =



0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0

 , P 1
max =



1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0


(17)

Fig. 2. The optimal topographies and the associated tra-
jectories for the permutation matrices (17). Left: L =
100 m. Right: L = 1 m.

As we observed in the test above, the length of raceway
has a potential influence on the objective function and
the gain, we then provide a test for different values of the
length L. Fig. (3) shows the objective function µ̄∆ and the
two ratios r1, r2 as a function of the length L. Note that
the objective function decreases when L increases except
in the neighbourhood of L = 12.5 m, on the same time, we
observe that the influence of topography is very limited
comparing to the influence of the permutation strategies.

Fig. 3. The optimal value of the objective function µ̄∆

(top) and the two ratios r1, r2 (bottom) for L =
100/2{0,...,10}.

Varying volume We consider now that the volume can
vary. Note that the volume related coefficient a0 is also
a parameter to be optimized. Let us define two ratios
similar as (16) to evaluate the efficiency of the permutation
strategies,

r̃1 :=
ΠPmax

∆ (ã∗)−ΠPmax

∆ (ãf )

ΠPmax

∆ (ãf )
,

r̃2 :=
ΠPmax

∆ (ã∗)−Π
INz

∆ (ãf )

Π
INz

∆ (ãf )
,

(18)

where ãf := [ã∗0, 0, · · · , 0] and ã∗0 is the optimal volume
related value. The initial guess of ã is set to be a null
vector except ã∗0 = 0.4 as initial value. We keep the same
length setting as in constant volume test, the optimal
matrices PLmax are given in (19) and the associated optimal
topographies are presented in Fig. 4. The two ratios
defined in (18) are r̃1 = 0.918%, r̃2 = 9.284% and
r̃1 = 0.00003%, r̃2 = 12.714% respectively.

P 100
max =



0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

 , P 1
max =



0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0


(19)

As shown experimentally in the previous test, the influence
of the topographies remain limited, at the same time,



Fig. 4. The optimal topographies and the associated tra-
jectories for the permutation matrices (19). Left: L =
100 m. Right: L = 1 m.

non trivial permutation strategies PLmax are obtained for
different raceway length L, in particular these strategies
are also different from the case with a fixed volume.
Moreover, these strategies have a better improvement
when the volume is also optimized. Note that in this case
the algorithm stops before finding an optimum since it
is limited by the constraint subcritical flow. Fig. 5 shows
the objective function Π∆ and the two ratios r̃1, r̃2 as a
function of the length L. Note that the average growth
rate Π∆ increase when L goes to 0. This flashing effect
corresponds to the fact that the algae exposed to high
frequency flashing have a better growth. This phenomenon
has already been reported in literature (e.g. Bernard et al.,
2021b; Lamare et al., 2019).

Fig. 5. The optimal value of the objective function Π∆

(top) and the two ratios r̃1, r̃2 (bottom) for L =
100/2{0,...,10}.

5. CONCLUSION

Adapting the shape of the raceway to an original mixing
system is an innovative strategy to boost the algal process
productivity. To realize in practice the ideal mixing a
system more elaborated than a paddle wheel is required.

However, with the Han parameter considered for this
species the gain stays limited and would not compensate
a higher cost due to the more complicate design of the
bottom topography and of the mixing device. It is possi-
ble that a higher gain is also obtained when leaving the
laminar regime, but the energy dissipation in a turbulent
regime would lead to a strong enhancement of the operat-
ing costs.
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