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Abstract: Adaptive model predictive control (AMPC) schemes can prove beneficial in the
control of non-linear time varying systems due to their ability to maintain closed-loop
performance in the face of large transitions in operating conditions. In this work, two non-
cooperative distributed adaptive MPC (dAMPC) schemes are proposed that are based on ARX
models parameterized using generalized orthonormal basis filters (GOBF). Poles of the GOBF
models estimated through offline estimation are kept fixed and only the Fourier coefficients
are updated recursively online thereby avoiding drift in the pole locations. The system under
consideration is decomposed into a number of subsystems coupled through the inputs. A separate
local AMPC controller is implemented for each subsystem. Each local controller optimizes its
input trajectories assuming the input trajectories of its neighbors fixed to the last computed
values, and then shares the computed inputs with the neighbors. We consider both sequential
and iterative distributed control strategies for the dAMPC development. The efficacy of the
proposed dAMPC schemes is demonstrated using simulation studies on an octuple tank process.
When the system is subjected to large transitions in operating points, the proposed dAMPC
schemes generate closed loop performances comparable to a centralized adaptive MPC scheme
while significantly reducing the average computation time.

Keywords: Model predictive control, distributed control, adaptive control, orthonormal basis
filters, recursive least square estimation.

1. INTRODUCTION

Performance of a model predictive control (MPC) scheme
based on linear black-box models can deteriorate if the op-
erating condition changes significantly. A possible remedy
to deal with this problem is to employ an adaptive MPC
(AMPC) scheme wherein the linear model parameters
are updated online. To reduce the computational burden
on an online MPC optimization problem, it is usually
transformed into a quadratic programming (QP) problem.
AMPC scheme requires online parameter estimation and
QP transformation using an updated model at every sam-
pling instant. Thus, it demands more computational effort
and time as compared to the non-adaptive MPC scheme
wherein the matrices for QP formulation are initially con-
structed only once. This increment in computation time
specially in case of large dimensional system can be a
serious issue, although the AMPC scheme alleviates the
limitation of the linear non-adaptive MPC scheme.

With the increasing complexity and dimension of in-
dustrial processes, a distributed MPC (dMPC) scheme
has received a significant amount of attention in recent
years. This is mainly due to its reduced computational

complexity as a single large-scale optimization problem
is decomposed into a number of distributed small-scale
optimization problems. According to Christofides et al.
(2013), dMPC algorithms are classified into two broad cat-
egories: (a) cooperative dMPC where each local controller
optimizes a global cost function and (b) non-cooperative
dMPC in which each local controller optimizes a local cost
function.

In a non-cooperative dMPC scheme for two subsystems
coupled through the inputs (Maxim et al. (2015)), each
local controller solves its own local optimization problem
based on the shifted previous optimal input trajectory
of the neighbor. A non-cooperative dMPC scheme with
iterative strategy is developed based on Nash optimality
for control of large-scale systems in (Du et al. (2001)).
Recently, Song et al. (2019) have developed a distributed
adaptive MPC scheme for linear systems with unknown
parameters. In this scheme, a cooperative distributed
control algorithm is considered with a Lyapunov functional
to solve the adaptive control problem. However, to the best
of our knowledge, non-cooperative distributed adaptive
MPC schemes based on black-box models have not been
developed in the literature.



In this work, we develop two non-cooperative distributed
adaptive MPC (dAMPC) schemes based on ARX models
parameterized using generalized orthonormal basis filters
(GOBF). We decompose the overall system into a number
of subsystems coupled through the inputs. Each subsystem
is represented by GOBF-ARX local model. Fourier coef-
ficients of each multi-input single-output (MISO) GOBF-
ARX model in each subsystem are estimated online while
keeping the GOBF pole locations fixed. Every subsys-
tem is associated with a local adaptive MPC controller.
Each local controller optimizes its own set of inputs while
keeping its neighboring subsystem inputs fixed to the last
computed values and then shares the computed inputs
with the neighbors. We consider both sequential and it-
erative distributed control strategies for the dAMPC de-
velopment. In a sequential strategy, each controller solves
its own local optimization problem in sequence and only
once per sampling period, whereas in an iterative strategy,
all the controllers optimize their own local cost function
simultaneously in parallel and iterative manner (Liu et al.
(2010)). The efficacy of the proposed dAMPC schemes is
demonstrated using simulation studies on an octuple tank
system.

The paper is organized into five sections. The second
section presents the control relevant model development
and the parameter estimation schemes. Section 3 presents
the details of the proposed dAMPC formulation. The
results of the simulation study are presented in section
4. Finally, the main conclusions reached from the analysis
of the simulation study are presented in the last section.

2. MODEL IDENTIFICATION

2.1 Development of GOBF-ARX model

In this text, superscript (i) is used to represent the ith

subsystem model, whereas superscript [j] represents the
jth MISO model. Now, consider a r × m MIMO system
which can be represented by r MISO models. The jth

MISO model can be expressed as follows

yj,k =

m∑
i=1

G
[j]
i (z, θ)ui,k + H[j](z, θ)ej,k (1)

where j = 1, 2, ..., r and θ ∈ Rp represents the model

parameters. Both {G[j]
i : i = 1, 2, ...,m} and H[j] are

strictly proper stable transfer functions, y represents the
process output, u represents the process input and {ej,k}
is a zero mean white noise sequence. For the purpose of
parameter estimation, this model is rearranged in a one
step predictor form as follows

ŷj,k|k−1 =

m∑
i=1

W
[j]
u,i(z, θ)ui,k + W[j]

y (z, θ)yj,k (2)

yj,k = ŷj,k|k−1 + ej,k (3)

As suggested by Muddu et al. (2010), W
[j]
u,i(z, θ) and

W
[j]
y (z, θ) can be parameterized using generalized or-

thonormal basis filters which are represented as

Fl(z) =

√(
1− ‖ξl‖2

)
(z − ξl)

l−1∏
i=1

(1− ξ∗i z)
(z − ξi)

(4)

where {ξl : l = 1, 2, ...} represents an arbitrary sequence of
poles inside the unit circle appearing in complex conjugate

pairs. Thus, W
[j]
u,i(z, θ) and W

[j]
y (z, θ) are parameterized as

follows

W
[j]
u,i(z, θ) =

nu,i∑
l=1

α
[j]
i,lF

[j]
u,l (z, ξu,i) (5)

W[j]
y (z, θ) =

ny∑
l=1

β
[j]
l F

[j]
y,l (z, ξy) (6)

where nu,i and ny represent the number of OBF poles for

G
[j]
i and H[j] respectively. A state realization of the jth

MISO GOBF-ARX model is given by

x
[j]
k+1 = Ψ[j]x

[j]
k + Γ[j]uk + L[j]

p yj,k (7a)

yj,k = C[j]x
[j]
k + ej,k (7b)

where x
[j]
k ∈ Rn[j]

represents the state vector, uk ∈ Rm

represents the input vector and {ej,k} represents the

innovation sequence. C[j] consists of the Fourier series

expansion coefficients {α[j]
i,l} and {β[j]

l } of (5) and (6)

respectively. Defining the matrix Φ[j] as

Φ[j] = Ψ[j] + L[j]
p C[j] (8)

the model (7) can be rearranged to get the standard
innovation form of state space realization for the jth MISO
model as

x
[j]
k+1 = Φ[j]x

[j]
k + Γ[j]uk + L[j]

p ej,k (9a)

yj,k = C[j]x
[j]
k + ej,k (9b)

2.2 Development of subsystem-based model

To demonstrate the development of the subsystem-based
local models with better intuitions, the overall system is
decomposed into 2 subsystems {Si : i = 1, 2}. Suppose
the ith subsystem consists of outputs {yj , j = 1, 2, . . . ri}.
Then, ri MISO models of the form (9) can be stacked
appropriately to obtain the ri ×m MIMO model for the
ith subsystem as

x
(i)
k+1 = Φ(i)x

(i)
k + Γ(i)uk + L(i)

p e
(i)
k (10a)

y
(i)
k = C(i)x

(i)
k + e

(i)
k (10b)

The stacked vectors are defined as

x
(i)
k =

[(
x

[1]
k

)T (
x

[2]
k

)T
. . .
(
x

[ri]
k

)T]T
y

(i)
k = [y1,k y2,k . . . yri,k]

T

e
(i)
k = [e1,k e2,k . . . eri,k]

T

Similarly, the model matrices are given by

Φ(i) = block diagonal
[
Φ[1] Φ[2] . . . Φ[ri]

]
L(i)
p = block diagonal

[
L[1]
p L[2]

p . . . L[ri]
p

]
C(i) = block diagonal

[
C[1] C[2] . . . C[ri]

]
Γ(i) =

[(
Γ[1]
)T (

Γ[2]
)T

. . .
(

Γ[ri]
)T]T

We can see from the model equations (10), that the sub-
systems are coupled through the inputs, but not through
the states. Since, there are m inputs, the input matrix Γ(i)

has m number of columns, and thus can be rewritten as



Γ(i) =
[
Γ

(i)
1 Γ

(i)
2 . . . Γ(i)

m

]
(11)

Clearly, Γ
(i)
t ∈ Rn(i)×1, where t = 1, 2, ...,m and n(i) is

the number of states in the ith subsystem model. Now,
suppose out of the m inputs, the first m1 inputs {ul :
l = 1, 2, ...,m1} are the manipulated inputs of S1 and the
remaining (m−m1) inputs are the manipulated inputs of
S2. By further decomposing the input matrix Γ(i) of the

ith subsystem in (10a) into two matrices Γ
(i)
um and Γ

(i)
ud, the

model for the ith subsystem can be rewritten as

x
(i)
k+1 = Φ(i)x

(i)
k + Γ(i)

umu
(i)
m,k + Γ

(i)
udu

(i)
d,k + L(i)

p e
(i)
k (12a)

y
(i)
k = C(i)x

(i)
k + e

(i)
k (12b)

where u
(i)
m,k is the manipulated input vector of the ith

subsystem, and u
(i)
d,k is the vector consisting of the inputs

from the other subsystems which can be treated as a
disturbance input of the ith subsystem. Then, we have

Γ(1)
um =

[
Γ

(1)
1 . . . Γ(1)

m1

]
; Γ

(1)
ud =

[
Γ

(1)
m1+1 . . . Γ(1)

m

]
Γ(2)
um =

[
Γ

(2)
m1+1 . . . Γ(2)

m

]
; Γ

(2)
ud =

[
Γ

(2)
1 . . . Γ(2)

m1

]
2.3 Offline and Online Parameter Estimation

To begin with, multiple MISO GOBF-ARX models are
developed using a batch of data generated by injecting
simultaneous perturbations into the system. This offline
estimation of model parameters is carried out using the
nested optimization approach developed in (Muddu et al.
(2010)). In this work, we consider a model with fixed
poles for the development of the adaptive control scheme.
Hence, once the OBF poles are estimated from offline
identification exercise, the matrices Φ, Γ and Lp in (9)
are treated as fixed. To adapt to the changing operating
conditions, we modify the measurement equation of the
MISO model in each of the subsystem as follows

yj,k = µj,k + C
[j]
k x

[j]
k + ej,k (13)

The bias term µj,k is introduced to take care of the
change in the operating points as well as the mean shift
in any additive disturbance that may affect the plant

outputs. The parameters µj,k and C
[j]
k in (13) are updated

online using a Recursive Least Squares (RLS) estimation
algorithm. Due to better numerical stability, we consider
the square root form of the RLS algorithm (Söderström
and Stoica (1988)).

3. DISTRIBUTED AMPC

3.1 dAMPC formulation

In this section, we formulate the dAMPC scheme based
on the GOBF-ARX models identified online. At the kth

sampling instant, we have the model equations for the ith

subsystem as follows

x
(i)
k+1 = Φ(i)x

(i)
k + Γ(i)

umu
(i)
m,k + Γ

(i)
udu

(i)
d,k + L(i)

p e
(i)
k (14a)

y
(i)
k = µ̂

(i)
k + Ĉ

(i)
k x

(i)
k + e

(i)
k (14b)

Note that, in the proposed adaptive formulation, the
system matrices appearing in (14a) remain unchanged

while µ̂
(i)
k and Ĉ

(i)
k in (14b) are time varying and are

updated using the RLS algorithm. Thus, given a guess
of the future inputs, the predictions over the future time
window [k+1, k+Np], where Np represents the prediction

horizon, can be generated with the initial condition x̂
(i)
k|k =

x
(i)
k as follows

x̂
(i)
k+l|k = Φ(i)x̂

(i)
k+l−1|k + Γ(i)

umu
(i)
m,k+l−1|k + Γ

(i)
udu

(i)
d,k+l−1|k

+ L(i)
p e

(i)
f,k (15a)

ŷ
(i)
k+l|k = µ̂

(i)
k + Ĉ

(i)
k x̂

(i)
k+l|k + e

(i)
f,k (15b)

e
(i)
f,k = αe

(i)
f,k−1 + (1− α)e

(i)
k (15c)

e
(i)
k = y

(i)
k −

[
µ̂

(i)
k + Ĉ

(i)

k x
(i)
k

]
(15d)

where l = 1, 2, ..., Np, α ∈ [0, 1) is a tuning parameter and

e
(i)
f,k represent the innovation filtered through a unity gain

low pass filter to suppress the effect of the high frequency
noise on the future predictions.

The local cost function for the ith subsystem is given as
follows

J
(i)
k =

Np−1∑
l=1

∥∥∥E(i)
k+l

∥∥∥2

W
(i)

E

+
∥∥∥x(i)

k+Np|k − x
(i)
s,k

∥∥∥2

w
(i)

∞,k

+

Nc−1∑
l=0

∥∥∥δu(i)
m,k+l|k

∥∥∥2

W
(i)
u

+

Nc−1∑
l=0

∥∥∥∆u
(i)
m,k+l|k

∥∥∥2

W
(i)
∆u

(16)

where

E
(i)
k+l = s

(i)
k − ŷ

(i)
k+l|k

δum,k+l|k = u
(i)
m,k+l|k − u

(i)
sm,k

∆u
(i)
m,k+l|k = u

(i)
m,k+l|k − u

(i)
m,k+l−1|k

u
(i)
m,k−1|k = u

(i)
m,k−1

W
(i)
E � 0, W

(i)
u < 0, W

(i)
∆u < 0 are the weighting matrices

and Nc represents the control horizon. The terminal state

weighting matrix w
(i)
∞,k is evaluated at every sampling

instant by solving a discrete Lyapunov equation given by

w
(i)
∞,k =

(
Ĉ

(i)
k

)T
W

(i)
E Ĉ

(i)
k +

(
Φ(i)

)T
w

(i)
∞,kΦ(i) (17)

When the number of controlled outputs is equal to or more
than the number of manipulated inputs, the target input

u
(i)
sm,k and the target state x

(i)
s,k can be computed by solving

the following optimization problem

min
u

(i)

sm,k

(
s

(i)
k − y

(i)
s,k

)T
W

(i)
E

(
s

(i)
k − y

(i)
s,k

)
(18a)

subject to(
I− Φ(i)

)
x

(i)
s,k = Γ(i)

umu
(i)
sm,k + Γ

(i)
udu

(i)
sd,k + L(i)

p e
(i)
f,k (18b)

y
(i)
s,k = µ̂

(i)
k + Ĉ

(i)
k x

(i)
s,k + e

(i)
f,k (18c)

u
(i)
min ≤ u

(i)
sm,k ≤ u

(i)
max (18d)

where s
(i)
k is the setpoint, u

(i)
sd,k is the vector consisting of

the target inputs of the neighboring subsystems. Then, the
optimization problem (OP) for the ith subsystem which is
solved at every sampling instant is given as follows



min
u

(i)

m,[k,k+Nc−1]

J
(i)
k (19a)

subject to

x̂
(i)
k+l|k = Φ(i)x̂

(i)
k+l−1|k + Γ(i)

umu
(i)
m,k+l−1|k

+ Γ
(i)
udu

(i)
d,k+l−1|k + L(i)

p e
(i)
f,k (19b)

ŷ
(i)
k+l|k = µ̂

(i)
k + Ĉ

(i)

k x̂
(i)
k+l|k + e

(i)
f,k (19c)

u
(i)
min ≤ u

(i)
m,k+l|k ≤ u

(i)
max (19d)

∆u
(i)
min ≤ ∆u

(i)
m,k+l|k ≤ ∆u(i)

max (19e)

y
(i)
min ≤ ŷ

(i)
k+l|k ≤ y

(i)
max (19f)

The optimization problem (19) is solved using QP solver.
Then, only the first input move is applied to the plant i.e.,

u
(i)
k =

(
u

(i)
m,k|k

)∗
.

3.2 dAMPC algorithm

Based on the dMPC implementation strategies presented
in (Christofides et al. (2013), Liu et al. (2010), Du et al.
(2001)), the algorithms for implementation of the pro-
posed non-cooperative dAMPC schemes in sequential and
iterative configurations with ‘N ’ numbers of subsystems
are presented in Algorithms 1 and 2 respectively. The
algorithms are employed at every sampling instant ‘k’. It
is to be noted that while solving the local optimization
problem (19) by the ith local controller, the inputs from the

neighboring subsystems i.e., u
(i)
d,k are assumed to be fixed

to the last computed values. When the current sampling
instant optimal input trajectories of the neighboring sub-

systems are not available, u
(i)
d,k assumes the shifted optimal

input trajectories of the previous sampling instant. In the
algorithms, uk denotes the input to the overall system,

while u
(i)
k and u

(i)
s,k are the manipulated input and the

target input of the ith subsystem. In the iterative dAMPC
algorithm, the maximum number of iterations (cmax) is
considered as the termination condition.

Algorithm 1 Sequential dAMPC

1: for i = 1, 2 . . . , N do

2: acquire measurement y
(i)
k

3: using (14) update x
(i)
k using uk−1 and x

(i)
k−1

4: update µ̂
(i)
k and Ĉ

(i)

k using y
(i)
k and x

(i)
k

5: using (18) obtain u
(i)
s,k, x

(i)
s,k with assumption that

∀j = 1, 2, . . . N, j 6= i, u
(j)
s,k = u

(j)
s,k−1

6:

(
u

(i)
k

)∗
= argmin

(
J

(i)
k

)
(OP given by (19))

7: send
(
u

(j)
k

)∗
∀j = 1, 2, . . . i, i 6= N to (i+ 1)th

subsystem

8: end for

4. SIMULATION STUDY

The simulation study for demonstrating the efficacy of
the proposed dAMPC schemes is conducted on an octuple
tank system. The octuple tank system used for the simula-
tion study is the modified version of the system presented

Algorithm 2 Iterative dAMPC

1: for c = 1, 2, . . . , cmax do

2: for i = 1, 2 . . . , N do

3: if c = 1 then

4: acquire measurement y
(i)
k

5: using (14) update x
(i)
k using uk−1 and x

(i)
k−1

6: update µ̂
(i)
k and Ĉ

(i)

k using y
(i)
k and x

(i)
k

7: using (18) obtain u
(i)
s,k, x

(i)
s,k with assumption

that ∀j 6= i, j = 1, 2 . . . N, u
(j)
s,k = u

(j)
s,k−1

8: end if

9:

(
u

(i)
k

)∗
= argmin

(
J

(i)
k

)
(OP given by (19))

10: end for

11: for i = 1, 2 . . . , N do

12: send
(
u

(i)
k

)∗
to each neighboring subsystem

j = 1, 2, . . . , N, j 6= i

13: end for

14: end for

γ1

(1
−
γ
1
)

P
u
m
p
1

v1 Tank 1

h1 h2 h3 h4

h5 h6 h7 h8

Tank 5

β1 (1− β1)
(1− β2)β2

Tank 6

Tank 2 Tank 3

Tank 7

γ2

(1
−
γ
2
)

P
u
m
p
2

v2 Tank 4

Tank 8

γ3

P
u
m
p
3

v3

γ4

(1
−
γ
4
)

P
u
m
p
4

v4

Fd,1 Fd,2

(1
−
γ
3
)

Fig. 1. Schematic diagram of octuple tank system

by Maxim et al. (2019). It is obtained by linking the
two benchmark quadruple tanks presented by Johansson
(2000) in a series as shown in Figure 1. As the name indi-
cates the setup consists of eight interacting tanks and four
pumps. The input voltages v1(= u1), v2(= u2), v3(= u3)
and v4(= u4) supplied to the respective pumps are the ma-
nipulated inputs of the system. The controlled outputs are
the four bottom tank levels h1(= y1), h2(= y2), h3(= y3)
and h4(= y4) measured in term of volts using the level
measurement devices.

We introduce two unmeasured disturbance inlet flows Fd,1

and Fd,2 with valve settings β1 and β2 respectively. As per
the redefined process, the system dynamics becomes

dh1

dt
= − a1

A1

√
2gh1 +

a5

A1

√
2gh5 +

γ1k1

A1
v1 (20a)

dh2

dt
= − a2

A2

√
2gh2 +

a6

A2

√
2gh6 +

γ2k2

A2
v2 (20b)

dh3

dt
= − a3

A3

√
2gh3 +

a7

A3

√
2gh7 +

γ3k3

A3
v3 (20c)



dh4

dt
= − a4

A4

√
2gh4 +

a8

A4

√
2gh8 +

γ4k4

A4
v4 (20d)

dh5

dt
= − a5

A5

√
2gh5 +

(1− γ4)k4

A5
v4 +

β1

A5
Fd,1 (20e)

dh6

dt
= − a6

A6

√
2gh6 +

(1− γ1)k1

A6
v1 +

β2

A6
Fd,2 (20f)

dh7

dt
= − a7

A7

√
2gh7 +

(1− γ2)k2

A7
v2 +

(1− β1)

A7
Fd,1

(20g)

dh8

dt
= − a8

A8

√
2gh8 +

(1− γ3)k3

A8
v3 +

(1− β2)

A8
Fd,2

(20h)

The system parameter values used in the simulation study
and the chosen operating points are presented in Tables 1
and 2 respectively.

Table 1. Parameters

Parameters Values

A1, A3, A5, A7 28 cm2

A2, A4, A6, A8 32 cm2

a1, a3, a5, a7 0.071 cm2

a2, a4, a6, a8 0.057 cm2

kc 0.50 V/cm
g 981 cm/s2

Table 2. Operating points

Parameters Nominal values
h0

1, h
0
2, h

0
3, h

0
4 15.59, 16.09, 13.64, 15.45 cm

h0
5, h

0
6, h

0
7, h

0
8 2.97, 2.63, 2.65, 3.03 cm

v0
1 , v

0
2 , v

0
3 , v

0
4 3.00, 3.00, 3.00, 3.00 V

F 0
d,1, F

0
d,2 2.00, 2.00 cm3/s

y0
1 , y

0
2 , y

0
3 , y

0
4 7.79, 8.04, 6.82, 7.72 V

k1, k2, k3, k4 3.33, 3.35, 3.33, 3.35 cm2/V/s
γ1, γ2, γ3, γ4 0.70, 0.60, 0.65, 0.55
β1, β2 0.45, 0.55

The control objective is to control the water levels in the
four bottom tanks under the influence of unmeasured dis-
turbances. The considered system is decomposed into two
subsystems, S1 : {y1, y2, u1, u2} and S2 : {y3, y4, u3, u4}.
Since each subsystem has 2 inputs and 2 outputs, each
local controller is a 2× 2 AMPC controller. The following
performance indices are used to facilitate the comparison
of the different control schemes.

• Performance index (J)

J =
1

Nr

Nr∑
i=1

(
1

Ns

Ns∑
k=1

{
‖sk − yk‖2WE

+ ‖uk − uk−1‖2W∆u

}){i}
(21)

Here, Ns and Nr are the numbers of samples and
noise realization respectively in the simulation study,
sk and yk are the setpoint and output vectors of the
overall system respectively and uk is the manipulated
input to the overall system at the sampling instant k.
The superscript {i} refers to the ith noise realization.
• Computation time (CT)

The average computation time per sampling instant
in second.

The given system is perturbed in open loop by simultane-
ously introducing low frequency (between 0 to 0.5 rad/s)
random binary sequence (RBS) in the inputs to the plant.
The state and measurement noises are both assumed to
be zero mean Gaussian with covariance matrix equal to
0.252× I. Then, the resulting input-output data is used to
identify four MISO GOBF-ARX models with 2 poles each
with respect to its inputs and 1 pole with respect to the
associated output.

The closed-loop performance of the proposed dAMPC
schemes under multiple setpoint changes is investigated.
The same tuning parameters are used for both the pro-
posed control schemes and are reported in Table 3. The
simulation study has been carried out using MATLAB
2020a on a computer with Core i7 processor, 3.6 GHz and
16 GB RAM.

Table 3. Controller tuning parameters

Parameters Values
Prediction Horizon 100
Control Horizon 5
Input blocking [5 15 20 30 30]
Error weighting matrix [1 1 1 1]
Input weighting matrix [1 1 1 1]
∆u weighting matrix [0.1 0.1 0.1 0.1]
Input constraints 0 to 20 V
Output constraints 0 to 20 V
Input rate constraints -1 to 1
Filter coefficients 0.75
Sampling interval 5 s

Figures 2 and 3 present the comparison of the closed-
loop performances of the different control schemes such
as centralized (non-adaptive) MPC (cMPC), centralized
adaptive MPC (cAMPC), distributed adaptive MPC in
sequential configuration (dAMPCs) and distributed adap-
tive MPC in iterative configuration (dAMPCi) with the
distributed controllers in non-cooperative strategy. Large
setpoint changes in the order of about (60-150)% are
introduced at the 50th and 250th sampling instances. It can
be observed from these plots that the proposed dAMPC
schemes in both sequential and iterative configurations
produce similar performance when compared with the
cAMPC scheme.

Variations in the model parameters are captured by the
sensitivity matrix defined as

Gk = Ĉk [I− Φ]
−1

Γ (22)

Parameter variations are shown in Figure 5. In this plot,
Gjj represents the gain between output j and input j. We
can observe significant changes in the model parameters
in response to the changes in the operating points.

Table 4 compares the performances of the different control
schemes with respect to the performance indices based on
20 stochastic simulation trials. Multiple noise realizations
are considered in order to make our analysis independent
of a specific noise realization. Mean value and standard
deviation of each performance index are reported in the
table. Note that, for dAMPCi scheme, the indices are
reported after the first two iterations as relative change
in the performance index after the first two iterations
were not significant and waiting till the convergence was
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Fig. 2. Comparison of controlled outputs: levels 1 and 2
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Fig. 5. Comparison of sensitivity variations

achieved only increased the computation time. With re-
spect to J, the proposed dAMPC schemes along with
the cAMPC scheme result in a significantly improved
performance in response to the setpoint changes when
compared with the performance of the cMPC scheme. As
compared to the cAMPC scheme, the proposed dAMPC
schemes result in a comparable performance with respect
to J. The cMPC scheme requires lesser computation time
than the cAMPC scheme. However, it is evident that
the proposed dAMPC schemes especially the iterative
dAMPC scheme are computationally more efficient than
the cAMPC scheme.

Table 4. Comparison of performance indices

Parameters J CT(s)
cMPC 25.7690 (0.1184) 0.0783 (0.59× 10−3)
cAMPC 18.8819 (0.1640) 0.1048 (0.93× 10−3)
dAMPCs 18.8898 (0.1665) 0.0753 (0.74× 10−3)
dAMPCi 18.8341 (0.1877) 0.0530∗ (0.76× 10−3)
∗The mean time spent by each AMPC controller is re-
ported.

5. CONCLUSION

In this work, two non-cooperative distributed adaptive
MPC (dAMPC) schemes are proposed that are based on
ARX models parameterized using generalized orthonor-
mal basis filters (GOBF). We have considered both se-
quential and iterative distributed control strategies for
the dAMPC development. The efficacy of the proposed
dAMPC schemes is demonstrated using simulation studies
on an octuple tank process. An analysis of the simulation
results reveals that the proposed dAMPC schemes out-
perform the centralized adaptive MPC scheme in terms
of average computation time with comparable closed-loop
performance.
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