REFERENCES Bogaerts, Ph., Mhallem Gziri, K., and Richelle, A. (2017). From MFA to FBA: Defining linear constraints accounting for overflow metabolism in a macroscopic FBA-based dynamical model of cell cultures in bioreactor. J. Process Control, 60, 34-47. Bogaerts, Ph., and Rooman, M. (2019). DISCOPOLIS: An algorithm for uniform sampling of metabolic flux distributions via iterative sequences of linear programs. IFAC-PapersOnLine, 52 (26), 269-274. Fallahi, S., Skaug, H., and Alendal, G. (2020). A comparison of Monte Carlo sampling methods for metabolic network models. PLoS ONE, 15 (7), e0235393. Haraldsdóttir, H., Cousins, B., Thiele, I., Fleming, R., Vempala, S. (2017). CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models. Bioinformatics, 33 (11), 1741-1743. Herrmann, H., Dyson, B., Vass, L., Johnson, G., and Schwartz, J.-M. (2019). Flux sampling is a powerful tool to study metabolism under changing environmental conditions. NPJ Syst. Biol. Appl., 5 (1), 32 Kaufman, D., and Smith, R. (1998). Direction choice for accelerated convergence in hit-and-run sampling. Oper. Res., 46 (1), 84-95. King, Z., Lu, J, Dräger, A, Miller, P, Federowicz, S, Lerman J., Ebrahim, A, Palsson, B., and Lewis, N. (2015). BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res., 44(D1), D515–D522. Klamt, S., and Stelling, J. (2003). Two approaches for metabolic pathway analysis? Trends in Biotech., 21 (2), 64-69 Llaneras, F., and Picó, J. (2007). An interval approach for dealing with flux distributions and elementary modes activity patterns. J. of Theor. Biol., 246, 290-308. Mahadevan, R., and Schilling, C. (2003). The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng., 5, 264-276. Megchelenbrink, W., Huynen, M., and Marchiori, E. (2014). optGpSampler: an improved tool for uniformly sampling the solution-space of genome-scale metabolic networks. PLoS ONE, 9, e86587. Mhallem Gziri, K., and Bogaerts, Ph. (2019). Determining a unique solution to underdetermined metabolic networks via a systematic path through the Most Accurate Fluxes. IFAC-PapersOnLine, 52 (1), 352-357. Nikdel, A., Braatz, R., and Budman, H. (2018). A systematic approach for finding the objective function and active constraints for dynamic flux balance analysis. Bioproc. Biosyst. Eng., 41, 641-655. Nogales, J., Palsson, B., and Thiele, I. (2008). A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst. Biol., 2: 79. Orth, J., Thiele, I., and Palsson, B. (2010a). What is flux balance analysis? Nature Biotechnol., 28 (3), 245-248. Orth, J., Fleming, R., and Palsson, B. (2010b). Reconstruction and use of microbial metabolic networks: the core Escherichia coli metabolic model as an educational guide. EcoSal Plus, 1(10). Richelle, A., Mhallem Gziri, K., and Bogaerts, Ph. (2016). A methodology for building a macroscopic FBA-based dynamical simulator of cell cultures through flux variability analysis. Biochem. Eng. J., 114, 50-61. Rubinstein, R. (1982). Generating random vectors uniformly distributed inside and on the surface of different regions. Eur. J. Oper. Res., 10 (2), 205-209. Smith, R. (1984). Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Oper. Res., 32 (6), 1296-1308.