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Abstract: Metabolic flux values are subject to equality (e.g., mass balances, measured fluxes) and inequality 

(e.g., upper and lower flux bounds) constraints. The system is generally underdetermined, i.e. with more 

unknown fluxes than equations, and all the admissible solutions belong to a convex polytope. Sampling 

that polytope allows subsequently computing marginal distributions for each metabolic flux. We propose 

a new version of the DISCOPOLIS algorithm (DIscrete Sampling of COnvex POlytopes via Linear 

program Iterative Sequences) that provides the same weight to all the samples and that approximates a 

uniform distribution thanks to a recursive loop that computes variable numbers (called grid points) of 

samples depending on the fluxes that have already been fixed in former iterations. The method is illustrated 

on three different case studies (with 3, 95 and 1054 fluxes) and shows interesting results in terms of flux 

distribution convergence and large ranges of the marginal flux distributions. Three consistent criteria are 

proposed to choose the optimal maximum number of grid points.  
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1. INTRODUCTION 

The determination of steady-state values of fluxes in metabolic 

networks boils down to solving a system of linear algebraic 

equations subject to linear inequality constraints. That system 

can be obtained from the metabolite mass balances under the 

assumption that they do not accumulate inside cells. Additional 

equations can be provided through measurements of exchange 

fluxes between cells and culture medium, and inequality 

constraints often correspond to lower and upper flux bounds. 

The system of equations is most of the time underdetermined, 

meaning that there are more unknowns (metabolic fluxes) than 

equations (mass balances and measured fluxes). Flux 

Variability Analysis (FVA) (Mahadevan and Schilling, 2003) 

or Flux Spectrum Approach (FSA) (Llaneras and Picó, 2007) 

can provide, for each flux, its minimum and maximum values 

among all the admissible solutions by solving linear programs 

(LPs). The same information can also be deduced from 

Elementary Flux Modes or Extreme Pathways (Klamt and 

Stelling, 2003). To reduce system underdetermination, several 

methods have been proposed. Flux Balance Analysis (FBA) 

(Orth et al., 2010a) is based on an objective cost function, made 

of a linear combination of fluxes, whose optimization 

represents some optimal metabolic behavior of the cells, e.g., 

their growth maximization. Other methods aim at extending the 

set of inequality constraints, either in a systematic way (Nikdel 

et al., 2018) or based on some biological assumptions, e.g., 

regarding overflow metabolism (Richelle et al., 2016; Bogaerts 

et al., 2017). Some methods force the determination of a unique 

solution, e.g., by using Most Accurate Fluxes (MAF) (Mhallem 

Gziri and Bogaerts, 2019).  

Another solution to cope with system underdetermination is to 

sample the convex polytope of the admissible solutions. The 

latter is defined by the intersection of half planes 

(corresponding to the abovementioned inequality constraints) 

in a space of reduced dimension that is obtained after 

eliminating the set of equality constraints (mass balances and 

measured fluxes). Marginal distributions of each flux can be 

obtained from that sampling. Hit-and-run algorithms (Smith, 

1984) are Markov Chain Monte Carlo (MCMC) methods that 

sample the solution space via a random walk but have the 

disadvantage to often get stuck in some regions of the polytope 

if it has an irregular shape with highly elongated directions. The 

artificial centering hit-and-run method (ACHR) (Kaufman and 

Smith, 1998) tries to circumvent that problem and has been 

later improved, in terms of computational efficiency and more 

extensive exploration of the polytope, by the optimized general 

parallel sampler (OPTGP) (Megchelenbrink, 2014). 

Haraldsdóttir et al. (2017) proposed the coordinated hit-and-run 

with rounding (CHRR) method that first determines the 

ellipsoid with largest volume which can be inscribed in the 

polytope and, secondly, computes the rounding transformation 

that transforms this ellipsoid into a unit ball. The same rounding 

transformation is then applied to the convex polytope of flux 

solutions, hence leading to a much more efficient sampling. 

CHRR is shown to outperform ACHR and OPTGP in terms of 

computation efficiency and convergence in two recent studies 

by Herrmann et al. (2019) and Fallahi et al. (2020).  



     

Bogaerts and Rooman (2019) proposed the DISCOPOLIS 

algorithm that samples the convex polytope via iterative 

sequences of LPs to constrain the solutions inside that polytope, 

taking into account all the previously estimated fluxes. Weights 

were associated to the samples to ensure the uniformity of their 

distribution. The drawback of this method is that the weights 

rapidly tend to zero in irregular shaped, highly constrained, 

polytopes and that, consequently, only a small subset of 

samples significantly contributes to the flux distribution.  

In this contribution, we propose a new recursive version of the 

DISCOPOLIS algorithm that, on the one hand, gives the same 

weight to all the samples and, on the other hand, introduces a 

new mechanism for approximating a uniform distribution via a 

recursive determination of the fluxes that takes into account the 

narrowing of the intervals of admissible solutions due to the 

fluxes already fixed in former iterations. We compare the new 

DISCOPOLIS version with the CHRR method and show 

through case studies that the former is able to uncover larger 

ranges of admissible flux values.  

The paper is organized as follows. Section 2 defines the convex 

polytope of flux solutions for a metabolic network. Section 3 

presents the DISCOPOLIS 2.0 algorithm and highlights the 

main differences with DISCOPOLIS 1.0. Section 4 illustrates 

its use, first, on a 3D toy example, secondly, on the core 

metabolic network of Escherichia coli (Orth et al., 2010b) and, 

finally, on the genome-scale metabolic network of 

Pseudomonas putida (Nogales et al., 2015). Conclusions and 

perspectives are proposed in Section 5. In Annex, we present 

an erratum to our previous paper (Bogaerts and Rooman, 2019).  

2. THE CONVEX POLYTOPE OF METABOLIC FLUXES 

Concatenating the mass balances of the intracellular 

metabolites that do not accumulate with the measurements of 

exchange fluxes, the metabolic flux distribution v (made of n 

fluxes vi) is constrained by a set of ne linear equations 

e eA v b=   (1) 

with nv  , en n

eA


 , en

eb  . 

The fluxes are also subject to ni inequality constraints 

(typically, lower and upper flux bounds) which can be 

concatenated into 

Av b   (2) 

with in n
A


  and in

b  . 

Taking into account the equality constraints (1), it is shown in 

(Bogaerts and Rooman, 2019) how to reduce the problem to the 

definition of the polytope (2) in a space of reduced dimension 

with en n
v

−
  and ( )i en n n

A
 −

 .  

3. THE DISCOPOLIS 2.0 ALGORITHM 

Version 2.0 of the DISCOPOLIS (DIscrete Sampling of 

COnvex POlytopes via Linear program Iterative Sequences) 

algorithm is presented in Fig. 1 (main routine) and Fig. 2 

(recursive routine). The user chooses the total number of 

samples (N) and the maximum number of grid points (SMAX). 

The samples are generated in subsets, each corresponding to a 

different instance of the while loop in the main routine (Fig. 1, 

line 6), and this until the total number of samples N is reached. 

For each subset of samples, SMAX represents the maximum 

number of values, for a given flux vi, that are randomly 

selected. We describe hereunder how the samples in a given 

subset are obtained. 

A first flux index i is randomly selected in [1,n] (Fig. 1, line 8). 

The recursive routine DISCOPOLIS_recursive_loop is then 

called at line 12 for randomly selecting SMAX flux values vi 

uniformly over [vi
MIN,vi

MAX], these lower and upper bounds 

having been computed through FVA. For each flux value vi, a 

new flux index inew is randomly chosen (inew  i), and the same 

routine is recursively called for computing Snew SMAX flux 

values vi,new, and so forth until the last flux index is reached, 

which stops the recursive call to the loop.   

The main inputs of the recursive routine (Fig. 2) are the index i 

of the selected flux, the set I of indexes of the fluxes that have 

not yet been selected, the number S  SMAX of flux values vi to 

be randomly drawn (SMAX when called by the main routine), the 

lower and upper bounds vi
LOW  vi

MIN and vi
UP  vi

MAX for the 

flux vi. These bounds are determined through LPs taking into 

account the values of all the fluxes previously fixed in the 

recursive loop via the matrix Aeq and the vector beq (which are 

empty when called by the main routine).  

For each of the S values of the flux indexed by i to be 

determined in the recursive loop, a value vi is randomly selected 

on [vi
LOW,vi

UP] (line 6), except if vi
UP - vi

LOW is smaller than a 

threshold value , in which case it is set as the arithmetic mean 

of vi
UP and vi

LOW (line 8). If that flux index i is the last to be 

selected (I = ) (line 10), then a new sample is obtained with 

specified values for the n fluxes (line 11); we then go over to 

the next randomly chosen value of vi in the loop, without a new 

call to the recursive loop. If the total number of samples N is 

reached, then the loop is broken (line 13). If that flux i is not 

the last to be determined in the flux distribution (I  ), then 

its fixed value appears as a new equality constraint in the matrix 

Aeq
new and the vector beq

new (line 18), except if the difference 

vi
UP - vi

LOW is below the threshold , in which case the flux vi is 

naturally constrained without the need for an additional 

equality constraint (line 17). Then a new flux index inew is 

randomly selected in the set I of flux indexes that remain to be 

set (line 20) and is subsequently withdrawn from that set (line 

21). The new lower and upper bounds vi
LOWnew and vi

UPnew of 

that flux are determined through LPs taking into account all the 

flux values that have been fixed in the previous iterations (lines 

22 and 23). The number Snew of fluxes vi,new is computed in line 

24. It corresponds to the maximum number of grid points SMAX 

multiplied by (vi
UPnew-vi

LOWnew)/(vi
MAX-vi

MIN), which corresponds 

to the relative decrease of the new flux range due to all the other 

fluxes that have been previously fixed. Snew is of course lower 

bounded by 1. These Snew fluxes vi,new are then randomly 

generated with a new call to the recursive loop (line 25).   

The reduction of the number of fluxes (from SMAX to Snew) is 

proportional to the relative decrease of the flux range and 

allows approximating a uniform distribution of the samples. By 

decreasing the number of fluxes that are computed in the 

narrowed interval vi
UPnew - vi

LOWnew, we compensate for the 

corresponding increase of probability associated to the fluxes 

in that new interval. 



     

Fig. 1. DISCOPOLIS 2.0 main routine.  

Fig. 2. DISCOPOLIS 2.0 recursive routine. 

Indeed, the uniform sampling on [vi
MIN,vi

MAX] has a probability 

(vi
MAX - vi

MIN)-1 while the uniform sampling on the narrower 

interval [vi
LOWnew,vi

UPnew] has a greater probability (vi
UPnew - 

vi
LOWnew)-1. This compensation was obtained by associating 

weights to the samples in the former version of DISCOPOLIS 

(Bogaerts and Rooman, 2019).  

Note that this algorithm does not correspond to a Markov chain 

Monte Carlo method. Each iteration of the while loop in the 

main routine generates a subset of samples issued from the 

recursive calls to DISCOPOLIS_recursive_loop. The samples 

in a given subset have necessarily common fluxes. On the 

contrary, the subsets are completely independent. For a given 

number of samples N, the number of independent subsets 

obtained in the while loop decreases when the maximum 

number of grid points SMAX increases. The limit case SMAX = 1 

generates N independent samples. However, in that case, the 

abovementioned mechanism for approximating a uniform 

distribution is not active anymore.  

Here are some significant advantages of DISCOPOLIS version 

2.0 with respect to version 1.0: 

- All the samples have the same weight and contribute equally 

to the flux marginal distributions, whereas the fraction of 

samples with very low weights was rapidly increasing with the 

number of grid points in version 1.0. 

- The choices of the tuning parameters (total number of samples 

N and maximum number of grid point SMAX) can be a posteriori 

tested as will be illustrated in the case studies.  

- The computational efficiency of this recursive version is 

higher and is increasing with SMAX given that it reduces the 

number of LPs to be solved. The run time decrease depends of 

course on the specific case study and on the tuning parameters 

but a factor of 4 can easily be reached.  

 

4. CASE STUDIES 

4.1 Toy Example: 3 fluxes 

We consider the 3D polytope defined by fluxes vT = [v1 v2 v3] 

belonging to the intersection of half-lines (2) with  

 

1 0 0 0.5 0.5 0 0 0.4

0 1 0 1.5 1.5 1 0 0

0 0 1 0 0 0 1 1.2

0 0 0 2 0.5 1 0.5 1

T

T

A

b

− 
 

= − −
 
 − 

=

  (3) 

The shape of this convex polytope is shown in Fig. 3. A set of 

104 samples uniformly distributed in the polytope were 

obtained with the rejection algorithm (Rubinstein, 1982). This 

algorithm samples uniformly each flux vi on the interval 

[vi
MIN,vi

MAX] corresponding to its lower and upper bounds. If the 

obtained flux distribution v satisfies the inequality constraints

Av b , it is kept as an additional sample, otherwise it is 

rejected. The procedure is repeated until the requested number 

of samples is obtained. This rejection algorithm has the double 

advantage to be very simple and to lead to a genuine uniform 

distribution of the samples. It is however not usable with high 

dimensional spaces and irregular shaped polytopes as the 

fraction of rejected samples dramatically increases. 

 Inputs : solution polytope defined by A and b; number of samples N; 

maximum number of grid points SMAX; minimum and maximum values 

of the fluxes vi
MIN and vi

MAX (i  [1,n]) obtained with Flux Variability 

Analysis 

 
Outputs : N samples v(k)  n  (k  [1,N]) 

1 

2 

 

3 

4 

6 

7 

 

8 

9 

10 

11 

12 

 

 

13 

Itot = [1,n];  /* define set of all indexes i of all the fluxes vi  v 

Li = vi
MAX - vi

MIN;  /* compute for each flux vi the distance  

     between minimum and maximum values 

 = 10-5;  /* set the minimum threshold for vi
UP - vi

LOW; 

m = 0;  /* initialize number of computed samples 

while m < N do 

   Aeq
new = ; beq

new = ;  /* initialize empty matrices for equality  

   constraints 

   Randomly select an index i in Itot; 

   Inew = Itot \ i ;  /* remove index i from set I; 

   vi
LOWnew = vi

MIN; vi
UPnew = vi

MAX; inew = i; Snew = Smax; 

   flag_stop = 0;  /* flag_stop = 1 when m = N and 0 when m < N 

   DISCOPOLIS_recursive_loop (Snew, inew, Inew, vi
LOWnew, vi

UPnew,  

      Aeq
new, beq

new, Li, , m)  /* compute Snew admissible values of the  

      inew-th flux vi,new  

end 

 

 Inputs : S, i, I, vi
LOW, vi

UP, Aeq, beq, Li, , m, N, SMAX 

 

 Output : S admissible values of the i-th flux vi, m, flag_stop 

 

1 

2 

3 

4 

5 

6 

 

 

7 

8 

 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

 

23 

 

24 

 

25 

 

 

26 

27 

for s = 1 to S do 

   if flag_stop = 1 then 

      break  /* go out of the loop if m  N 

   end 

   if vi
UP - vi

LOW >  then  

      vi = (vi
LOW +  ) + (vi

UP - vi
LOW - 2 ) * rand; 

         /* uniform sampling of  vi (rand is a real number uniformly  

             distributed in [0,1]) 

   else 

      vi = (vi
LOW + vi

UP) / 2;  /* use of the center of the new  

         solution interval if it is smaller than  

   end 

   if I =  then 

      m =m + 1; 

      if m  N then 

         flag_stop = 1; 

      end 

   else 

      Aeq
new = Aeq ; beq

new = beq ; 

      if vi
UP - vi

LOW >  then 

         Extend Aeq
new and beq

new to account for last fixed vi; 

      end 

      Randomly select an index inew in I; 

      Inew = I \ inew ;  /* remove index inew from set I; 

      vi
LOWnew = min v vi computed with LP subject to A*v ≤ b 

         and Aeq
new *v = beq

new; 

      vi
UPnew = max v vi computed with LP subject to A*v ≤ b 

         and Aeq
new *v = beq

new; 

      Snew = max (1 , round (SMAX * (vi
UPnew - vi

LOWnew) / Li));  /* number  

         of grid points remaining in the new constrained solution interval 

      DISCOPOLIS_recursive_loop (Snew, inew, Inew, vi
LOWnew, vi

UPnew,  

         Aeq
new, beq

new, Li, , m)  /* compute Snew admissible values of the  

         inew-th flux vi,new 

   end 

end 

 



     

 

 

Fig. 3. Toy example: 3 different views of 104 samples (red dots) 

uniformly distributed in the polytope Av b , defined in (3), obtained 

with the rejection algorithm. The blue circle corresponds to the mean 

of the flux distribution  0.79 0.50 0.23Tv = . 

 

Fig. 4. Toy example: mean values of the 3 fluxes from 104 samples 

obtained with DISCOPOLIS 2.0 using different numbers of grid 

points SMAX (upper plots, blue crosses, with y scales equal to the flux 

ranges) compared to the mean of the 104 samples obtained with the 

rejection algorithm (red lines); ratio between the minimum and 

maximum numbers of random selections among all the fluxes (lower 

left); number of independent subsets of samples obtained in the while 

loop (lower central, blue crosses) and their average number of samples 

(lower central, red circles); number of fluxes for which the IPSRF test 

fails (lower right).  

Fig. 4 shows the results obtained when computing 104 samples 

with DISCOPOLIS 2.0. Except for SMAX = 1, i.e. the case of 104 

independent samples without compensation mechanism for 

keeping uniformity, all the other results for SMAX  10 have a 

relative error less than 5%. Higher relative errors (10% and 

more) appear for SMAX  15. In the lower left plot of Fig. 4, we 

represent the ratio between the minimum and maximum 

numbers of random selections among all the fluxes (min #vi / 

max #vi). The random selection of the flux indexes corresponds 

either to line 8 in the main routine (Fig. 1) or to line 20 in the 

recursive routine (Fig. 2). Up to SMAX = 10, this ratio remains 

above 0.5, meaning that the flux index that has been the least 

randomly selected has however not been selected twice less 

than the most frequently chosen one. Except for 3 cases, all the 

ratios remain under 0.5 for SMAX  15. The lower central plot of 

Fig. 4 shows that for SMAX  15, i.e. the threshold above which 

relative errors of 10% and more appear, there are less than 10 

subsets (#subsets of v) that contain an average of 103 samples. 

Given the risk of lack of convergence when the number of 

independent sets dramatically reduces, the total number (sum 

over the three fluxes) of failed tests of convergence is shown in 

the lower right plot of Fig. 4, using the interval-based potential 

scale reduction factor (IPSRF) test. We use the same test 

criterion as Fallahi et al. (2020) and Herrmann et al. (2019): the 

test fails if IPSRF < 0.9 or IPSRF > 1.1. Problems of 

convergence are only detected for SMAX = 23, showing that the 

test is too optimistic in this low dimensional problem. 

We conclude from this toy example that: 

- DISCOPOLIS 2.0 recovers the mean of the genuine uniform 

distribution of samples provided by the rejection algorithm and 

this with relative errors of less than 5% in case SMAX  [2,10]; 

- for values of SMAX  15 we find that i) #subsets of v  10 and 

ii) min #vi / max #vi  0.5; when these 2 criteria are not satisfied, 

thus for SMAX  15, the mean of the samples exhibits large 

relative errors ( 10%); 

- the IPSRF test of convergence appears too optimistic in this 

low dimensional problem. 

4.2 Core Metabolic Network of Escherichia coli: 95 fluxes (22 

in the reduced space) 

This second case study consists of the core metabolic network 

of Escherichia coli (Orth et al., 2010b). The COBRA model 

(e_coli_core.mat) is available in the BiGG Models database 

(King et al., 2015). It consists of 95 fluxes with upper and lower 

bounds. As proposed in the supplementary tutorial of 

Haraldsdóttir et al. (2017), we set the maximum glucose uptake 

rate to 18.5 mmol/gDW/h and we remove the cellular objective 

(no FBA). We only consider the aerobic model, with unlimited 

oxygen uptake. Taking into account the equality constraints 

from mass balances, the convex polytope is defined by (2) with 
172 23A  . Fig. 5 compares the mean fluxes in the reduced 

solution space obtained from 104 DISCOPOLIS samples with 

different numbers of grid points SMAX (blue crosses) to the mean 

fluxes from 104 samples obtained with the CHRR algorithm 

(Haraldsdóttir et al., 2017) and a thinning parameter nSkip set 

to 5.103 (red lines). The DISCOPOLIS mean values obtained 

vary monotonically with SMAX and tend to a transient plateau for 

6  SMAX  8. The increase of SMAX before reaching that plateau 

helps tending to a uniform distribution as explained in Section 

3. Fig. 6 shows that the three criteria mentioned in section 4.1 

remain satisfied until SMAX reaches values within that plateau: 

min #vi / max #vi  0.5 for SMAX  8, #subsets of v  10 for SMAX 

 7 and none of the IPSRF convergence tests fail for SMAX  6. 

For SMAX  9, significant variations appear for some mean 

fluxes and the three criteria are all far from being satisfied. The 

comparison of the mean fluxes between the two algorithms 

shows that results are of the same magnitude, although some of 

them differ significantly, e.g., v1, v9, v15, v18.  

Selecting SMAX = 6, i.e. the most conservative choice for which 

the three criteria are satisfied, we compare in Fig. 7 the 

marginal probability density functions of each flux obtained  



     

 

Fig. 5. E. coli case study: mean of the 23 fluxes in the reduced solution 

space from 104 DISCOPOLIS samples with different numbers of grid 

points SMAX (blue crosses, with y scales equal to the flux ranges) 

compared to the mean fluxes from 104 CHRR samples with a thinning 

parameter nSkip set to 5.103 (red lines).  

 

Fig. 6. E. coli case study: 104 DISCOPOLIS samples: ratio between 

the minimum and maximum numbers of random selections among all 

the fluxes (left); number of independent subsets of samples obtained 

in the while loop (central, blue crosses) and their average number of 

samples (central, red circles); number of fluxes for which the IPSRF 

test fails (right). 

 

Fig. 7. E. coli case study: marginal probability density functions of the 

fluxes in the reduced solution space from 104 DISCOPOLIS samples 

with SMAX = 6 (blue) and from 104 CHRR samples with a thinning 

parameter nSkip set to 5.103 (red).  

with DISCOPOLIS (blue histograms) to the ones obtained with 

CHRR (red histograms). Besides the comparison of the mean 

values, we can observe here the overall tendency of the 

DISCOPOLIS algorithm to explore larger ranges of flux 

values. This can be explained by the total independency of the 

subsets of v obtained in the main routine (Fig. 1), which allows 

exploring completely different regions of the polytope. This 

tendency increases when SMAX decreases given that, for the limit 

case SMAX = 1, all the samples are independent. However, in the 

latter case, the distribution is not uniform.  

The equivalent of Fig. 6 in the case of only 103 DISCOPOLIS 

samples leads to a choice of SMAX = 6 (results not shown). The 

comparison of the marginal probability density functions 

shows very similar results with N = 103 and N = 104, hence 

proving the convergence of the distributions and the fact that 

they are already reached for N = 103 (results not shown). 

Finally, the computational time for 104 samples (using Matlab 

R2020b, IBM ILOG CPLEX Studio 12.10 for solving LPs with 

cplexlp, Intel Core i7 at 2.7 GHz with 16 GoRAM) is quite 

similar: 11.9 min for CHRR and 9.2 min for DISCOPOLIS 2.0, 

whereas the DISCOPOLIS 1.0 version takes 32.5 min.  

We conclude from this case study that: 

- the three convergence criteria (based on min #vi / max #vi, 

#subsets of v and IPSRF convergence test) are in good 

agreement and help choosing SMAX; 

- convergence is guaranteed with both N = 103 and N = 104; 

- DISCOPOLIS explores larger ranges of fluxes than CHRR; 

- the computational time is similar with both methods. 

4.3 Genome-scale Metabolic Network of Pseudomonas putida: 

1054 fluxes (122 in the reduced space) 

This third case study consists of the genome-scale metabolic 

network of Pseudomonas putida (Nogales et al., 2008). The 

COBRA model (iJN746.mat) is available in the BiGG Models 

database (King et al., 2015). It consists of 1054 fluxes with 

upper and lower bounds. As in the previous case study, we 

remove the cellular objective (no FBA). Taking into account 

the equality constraints from mass balances, the convex 

polytope is defined by (2) with 1304 122A  . Fig. 8 shows the 

same plots as in Fig. 6 for this new case study. The three 

convergence criteria are once again in agreement and lead to 

the optimal value SMAX = 4, which is the highest value such that 

min #vi / max #vi  0.5, #subsets of v  10 and no failed IPSRF 

tests. The equivalent of Fig. 8 in the case of only 103 

DISCOPOLIS samples leads to a choice of SMAX = 3 (results not 

shown) and, as in the previous case study, the marginal 

distributions of the fluxes are similar. Their comparison with 

the marginal distributions obtained from 104 CHRR samples 

(results not shown) confirms the tendency of the DISCOPOLIS 

algorithm to explore larger ranges of flux values. The thinning 

parameter nSkip was set to 1.2.105 to follow the rule of thumb 

proposed by Haraldsdóttir et al. (2017), i.e. nSkip = 8*(dim)2 

where dim is the dimension of the reduced space (dim = 122). 

Finally, Table 1 compares the percentages of fluxes that fail the 

IPSRF test and the run times for 103 and 104 samples with the 

CHRR and DISCOPOLIS algorithms. The DISCOPOLIS 

algorithm performs better than CHRR in terms of convergence 

of the samples distribution but is about 4 times slower than 

CHRR in this case of a large network. 



     

 

Fig. 8. Pseudomonas putida case study: same legend as Fig. 6. 

 

 DISCOPOLIS 

N = 103    

SMAX = 3  

DISCOPOLIS 

N = 104    

SMAX = 4 

CHRR   

N = 103 

CHRR   

N = 104 

% failed 

IPSRF tests 
0            

(13.7) 

0              

(8.9) 

85.3 

(44.9) 

53.3 

(30.5) 

Run time [h] 3.1 27.3 0.7 7.3 

Table 1. Pseudomonas putida case study: % of fluxes in the reduced 

dimension space (dim = 122) that fail the IPSRF test (values in 

parentheses for the full dimension space, dim = 1054) and run times.  

 

5. CONCLUSIONS AND PERSPECTIVES 

Version 2.0 of DISCOPOLIS uses a recursive loop for 

computing variable numbers (called grid points) of fluxes in 

order to take into account the fluxes already fixed in former 

iterations, and gives the same weight to all the samples. This 

mechanism allows approximating a uniform distribution, as 

illustrated on a 3D toy example. Two other case studies (95 

metabolic fluxes for E. coli and 1054 fluxes for Pseudomonas 

putida) show that three different but consistent criteria can be 

used for choosing the optimal maximum number of grid points 

SMAX: it should be the highest value which still provides 

convergence of the sample distribution. In comparison with the 

CHRR method, run times are similar with the 95 fluxes network 

but DISCOPOLIS runs 4 times slower than CHRR with the 

1054 fluxes network. However, the DISCOPOLIS algorithm 

explores larger ranges of flux values and is able to satisfy 

IPSRF convergence tests for all fluxes in the reduced 

dimension space, even for a large network (1054 fluxes) 

analyzed with a relatively small number of samples (103).  

Future work will include further optimizing the algorithm in 

terms of computational efficiency, testing its use with other 

complex networks, providing guidelines for the a priori choice 

of the tuning parameters N and SMAX, and further analyzing how 

the samples extensively explore the convex polytope.  

ANNEX: ERRATUM TO Bogaerts and Rooman (2019) 

It has been erroneously stated in our previous paper that all the 

samples computed via the CHRR method belong to the 

ellipsoid with largest volume that can be inscribed in the 

polytope, hence implying that “any subsequent hit-and-run 

sequence of samples provided by the CHRR algorithm 

necessarily has its mean positioned at the center of this 

ellipsoid” (and other equivalent claims). This is wrong given 

that the transformation from the ellipsoid to the unit ball is 

applied to the convex polytope of solutions, and thus preserves 

all the admissible solutions. 
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