Agarap, A.F. (2018). Deep Learning using Rectified Linear Units (ReLU). arXiv e-prints, arXiv:1803.08375. Alvarado-Morales, M., Hamid, M.K.A., Sin, G., Gernaey, K.V., Woodley, J.M., and Gani, R. (2010). A modelbased methodology for simultaneous design and control of a bioethanol production process. Computers & Chemical Engineering, 34(12), 2043 – 2061. doi:https://doi.org/ 10.1016/j.compchemeng.2010.07.003. 10th International Symposium on Process Systems Engineering, Salvador, Bahia, Brasil, 16-20 August 2009. Bebis, G. and Georgiopoulos, M. (1994). Feed-forward neural networks. IEEE Potentials, 13(4), 27–31. doi: 10.1109/45.329294. Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E.N. (2002). The explicit linear quadratic regulator for constrained systems. Automatica, 38(1), 3–20. doi: 10.1016/S0005-1098(01)00174-1. Beykal, B., Avraamidou, S., Pistikopoulos, I., Onel, M., and Pistikopoulos, E. (2020). Domino: Data-driven optimization of bi-level mixed-integer nonlinear problems. Journal of Global Optimization, 78. doi:10.1007/ s10898-020-00890-3. Brengel, D. and Seider, W. (1992). Coordinated design and control optimization of nonlinear processes. Computers & Chemical Engineering, 16(9), 861 – 886. doi:https://doi. org/10.1016/0098-1354(92)80038-B. An International Journal of Computer Applications in Chemical Engineering. Burnak, B., Diangelakis, N.A., and Pistikopoulos, E.N. (2019). Towards the grand unification of process design, scheduling, and control—utopia or reality? Processes, 7(7). doi:10.3390/pr7070461. Chu, Y. and You, F. (2014). Integrated scheduling and dynamic optimization by stackelberg game: Bilevel model formulation and efficient solution algorithm. Industrial & Engineering Chemistry Research, 53(13), 5564–5581. doi:10.1021/ie404272t. Diangelakis, N.A., Burnak, B., Katz, J., and Pistikopoulos, E.N. (2017). Process design and control optimization: A simultaneous approach by multi-parametric programming. AIChE Journal, 63(11), 4827–4846. doi:10.1002/ aic.15825. Flores-Tlacuahuac, A. and Biegler, L.T. (2007). Simultaneous mixed-integer dynamic optimization for integrated design and control. Computers & Chemical Engineering, 31(5), 588 – 600. doi:https://doi.org/10.1016/j. compchemeng.2006.08.010. ESCAPE-15. Kingma, D.P. and Ba, J. (2017). Adam: A method for stochastic optimization. 3rd International Conference for Learning Representations, San Diego, 2015. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv e-prints, arXiv:1509.02971. Petsagkourakis, P., Sandoval, I., Bradford, E., Zhang, D., and del Rio-Chanona, E. (2020). Reinforcement learning for batch bioprocess optimization. Computers & Chemical Engineering, 133, 106649. doi:https://doi. org/10.1016/j.compchemeng.2019.106649. Petsagkourakis, P., Orson Sandoval, I., Bradford, E., Galvanin, F., Zhang, D., and del Rio-Chanona, E.A. (2020). Chance Constrained Policy Optimization for Process Control and Optimization. arXiv e-prints, arXiv:2008.00030. Sakizlis, V., Perkins, J.D., and Pistikopoulos, E.N. (2004). Recent advances in optimization-based simultaneous process and control design. Computers & Chemical Engineering, 28(10), 2069 – 2086. doi:https://doi.org/ 10.1016/j.compchemeng.2004.03.018. Special Issue for Professor Arthur W. Westerberg. Schulman, J., Levine, S., Moritz, P., Jordan, M.I., and Abbeel, P. (2017a). Trust region policy optimization. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017b). Proximal policy optimization algorithms. Skogestad, S. and Morari, M. (1987). Control configuration selection for distillation columns. AIChE Journal, 33(10), 1620–1635. doi:10.1002/aic.690331006. Snoek, J., Larochelle, H., and Adams, R.P. (2012). Practical bayesian optimization of machine learning algorithms. Sung, S.W. and Lee, I.B. (1996). Limitations and countermeasures of pid controllers. Industrial & Engineering Chemistry Research, 35(8), 2596–2610. doi:10.1021/ ie960090+. Sutton, R.S. and Barto, A.G. (2018). Reinforcement Learning: An Introduction Second Edition. MIT Press. Torabi, F., Warnell, G., and Stone, P. (2018). Behavioral Cloning from Observation. Williams, R. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach Learn, 8, 229–256. doi:10.1007/BF00992696.