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Abstract: The performance of a chemical plant is highly affected by its design and control.
A design cannot be accurately evaluated without its controls and vice versa. To optimally
address design and control simultaneously, one must formulate a bi-level mixed-integer nonlinear
program with a dynamic optimization problem as the inner problem; this is intractable. However,
by computing an optimal policy using reinforcement learning, a controller with a closed-form
expression can be computed and embedded into the mathematical program. In this work, an
approach that uses a policy gradient method to compute the optimal policy, which is then
embedded into the mathematical program is proposed. The approach is tested in a tank design
case study and the performance of the controller is evaluated. It is shown that the proposed
approach outperforms current state-of-the-art control strategies. This opens a whole new range
of possibilities to address the simultaneous design and control of engineering systems.
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1. INTRODUCTION

The performance of a chemical plant is substantially af-
fected by its design and its ability to maintain the optimal
operating conditions under operational uncertainty (Di-
angelakis et al., 2017). A design cannot be evaluated
without the control and vice versa. Hence, it is essential to
simultaneously formulate the design and control of chemical
processes to maximize performance.

The Process Systems Engineering (PSE) community has
been challenging these problems for decades (Burnak
et al., 2019). On one hand, several frameworks have
been proposed to avoid simultaneous process design and
control problems by avoiding the solution of bi-level
mixed-integer dynamic optimization (MIDO) problem by
decoupling the approaches, such as in (Flores-Tlacuahuac
and Biegler, 2007), model-based flow sheet and process
group contribution method (Alvarado-Morales et al., 2010)
and control structure selection and design (Skogestad and
Morari, 1987). The controller used in previous studies were
mainly PI and PID controllers due to their simplicity and
robustness. However, this comes with its shortcomings,
such as not being able to handle slow disturbances (Sung
and Lee, 1996), multiple input multiple output (MIMO)
systems optimally, and the fact that they are based on
process linearizations.
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On the other hand, a small proportion of studies have
implemented model predictive control (MPC). One of the
first significant contributions to implementing the MPC for
simultaneous design and control was done by Brengel and
Seider (1992). In the formulation, the authors implemented
a bi-level optimization problem, where the outer level has
the economic objective while the inner level is the MPC
formulation as shown in (1).

min
p

Cp(p) + κCu(x(τ),y(τ),u(τ),p, θP (τ))

s.t. fp(p, θ
P (τ)) = 0

gp(p, θ
P (τ)) ≤ 0

min
π

Cu(x(τ),y(τ),u(τ),p, θP (τ))

s.t. ẋ = fu(x(τ),y(τ),u(τ),p, θP (τ))

u(τ) = π(x(τ),y(τ),p)

gu(x(τ),y(τ),u(τ),p, θP (τ)) = 0

hu(x(τ),y(τ),u(τ),p, θP (τ)) ≤ 0

(1)

where τ is time, x is the vector of states of the system,
y is the vector of system outputs, u is the control action
described by the policy π, p is the design variable vector
including the steady-state manipulated variables, θP is
the parameter vector of the process and f , g and h
are the constraints. Cp and Cu are the economic and
controllability cost functions and κ is the design and
control integration scaling factor which impacts the trade-



off between controllability and investment cost of the
system.

This bi-level optimization problem is extremely expensive
to solve online and this is why there was significantly
less work done in MPC compared to PI controllers for
simultaneous process design and control at the time. In
(Chu and You, 2014) the authors have proposed a novel
method utilizing a decomposition algorithm to solve bi-level
integrated scheduling and optimization for sequential batch
processes, while Beykal et al. (2020) have proposed a data-
driven framework to tackle bi-level optimization problems.
An approach to solve the bi-level problem was presented
by Bemporad et al. (2002); Sakizlis et al. (2004) where the
authors replaced the inner problem with a multi-parametric
MPC (mpMPC) reducing it to a simple look-up table
algorithm. In Diangelakis et al. (2017) the authors worked
further upon this approach and formulated a ”design-
dependent offline controller”, where it only requires solving
the mpMPC problem once offline. The biggest drawback of
these mpMPC approach is that they rely in linearizations
which do not represent well nonlinear dynamics.

To solve this intractable bi-level optimization problem, we
propose to take advantage of the closed form (explicit)
nature of reinforcement learning controllers. Reinforcement
learning (RL) controllers (Sutton and Barto, 2018) are a
natural choice, as they can address disturbances in highly
nonlinear and complex processes (Petsagkourakis et al.,
2020).

2. METHOD AND INTEGRATION

2.1 Problem Statement

Given a simultaneous process design and control problem,
first a bi-level optimization problem is formulated and
then split into two, the design problem and the control
problem. The design problem is formulated as a mixed
integer dynamic optimization (MIDO) problem as shown
in (2).

min
Y ,p

JSDC =

∫ TF

0

P(x,y,u,d,Y ,p)dτ

s.t.
dx

dτ
= f(x,y,u,d,Y ,p)

ymin ≤ y = g(x,u,d,Y ,p) ≤ ymax

ut = πθ(x
obs
t ,xobst−1,yt,yt−1,p

obs) ∀t
Y ∈ {0, 1}, xobst ∈ xt, p

obs ∈ p

[xmin,dmin] ≤ [xτ ,dτ ] ≤ [xmax,dmax] ∀τ
pmin ≤ p ≤ pmax
τ ∈ [0, TF ], t ∈ {1, ...nT − 1}

(2)

where τ is the continuous variable time τ ∈ [0, TF ], TF
is the time horizon discretized in nT time steps of size
∆τ = TF /nT . The subscript t is the time step number, it
represents the value of a variable at time τ = t∆τ where t ∈
{0, 1, ..., nT−1, nT }. While x ∈ Rnx is the vector of states
of the system, y ∈ Rny is the vector of system outputs,
u ∈ Rnu is the control action represented discretely
as a piece-wise constant variable, d is the disturbance
vector, Y is the design binary variable vector, p is the
design continuous variable vector including the steady-state

manipulated variables, P is the integral function of the
objective function JSDC (usually an economic/efficiency
related cost function), f are the differential equations
describing the process dynamics and g are the constraints.
The vectors with superscript obs are the values of the vector
which is observable by the controller, given that not the
whole state of the process is necessarily observable.

The controller in (2) is represented by a policy π parame-
terized by a set of parameters θ. The policy could be given
as a linear controller, e.g. (Chu and You, 2014; Diangelakis
et al., 2017). However, this approach has a limitation; there
is no close form expression for nonlinear dynamic systems.
As a result an appropriate approximation via linearization
is implemented (Diangelakis et al., 2017) and subsequently
a multi-parametric programming technique is applied to
compute the explicit solution of the optimal control prob-
lem. In this paper, we avoid the use of approximations in the
dynamic systems and reinforcement learning is utilized to
construct closed form expression for the general stochastic
closed-loop optimal control problem (see (3) and substitute
in (2)). Specifically policy gradient technique is proposed
to construct an optimal policy πθ as an artificial neural
network (ANN).

The goal of the design problem in (2) is to find combinations
of the design and binary variables (e.g. reactor type, process
layout), given an optimized controller to minimize an
objective function JSDC over a time horizon TF discretized
in nT number of time steps of size ∆τ = TF /nT while
satisfying the constraints f and g. To get the optimized
controller, an optimal control problem (OCP) is formulated
in a way that the controller would also take in the
observable design variable as its input. The formulation is
shown in (3).

max
πθ

E[JOCP (xobst ,yobst ,ut,p)]

s.t. x(0) = x0

xt+1 = f(xt,ut,dt,p) ∀t
ut = π(xobst ,xobst−1,y

obs
t ,yobst−1,p

obs)

xobst ∈ xt, y
obs
t ∈ yt, p

obs ∈ p

[xmin,umin] ≤ [xt,ut] ≤ [xmax,umax] ∀t
ymin ≤ yt ≤ ymax ∀t
t ∈ {1, ..., nT − 1}

(3)

where JOCP is the cost function of the OCP problem e.g.
setpoint error (not to be confused with the objective in
(2)). The goal of this optimal control problem is to find
the optimum parameters of the policy that maximize the
expectation of the objective function. Notice that this
problem is intractable as a closed-loop policy π needs to be
found. To solve this problem the policy is parameterized
by an ANN (πθ) and then a policy gradient method is used
(Petsagkourakis et al., 2020; Sutton and Barto, 2018) to
solve the optimal control problem.

This is a bi-level optimization problem, with the outer
level being a MINLP and the inner level an OCP. By
using RL this problem can be addressed. The bi-level
optimization problem can be separated and formulated as
presented in (3). Notice that the OCP takes into account
the design variables to calculate the control output. When
this is solved by RL, the final form of the policy is an



explicit function, that takes states and design variables
as input, and outputs an optimal control action, this can
be embedded into the MIDO problem formulated in (2).
Remark: If ReLU activation functions are used, these result
in a mixed integer linear function, which can be easily
appended to the MINLP problem.

2.2 Artificial Neural Networks (ANNs)

The simplest form of neural networks, feed-forward neural
network, is used in this work. An ANN is composed of
individual nodes/neurons in which each neuron may have
the same or different parameters and activation functions.
To make the concept more concrete, let us consider a simple
neural network shown in Fig. 1.

Fig. 1. Simple feed-forward artificial neural network.

Each neuron has its own parameters called weights and bi-
ases and they are denoted by w[l](n) and b[l](n) respectively.
The superscript [l] corresponds to the layer number while
the superscript (n) corresponds to the node number in that
layer. In each neuron, the weight is a vector with the same
size as the input to that node and the bias is a scalar.

There are two steps of calculations done in a neuron, first
is using the weights and bias to calculate a value z[l](n) and
then using the activation function of that layer to calculate
a[l](n). Activation functions are used to help with the non-
linearity, without it the neural network would just be the
same as a linear regression. More details and equations on
how the calculations are done in the neural network can
be found in (Bebis and Georgiopoulos, 1994).

The policy in our formulation is in the form of an ANN just
like the one shown in Fig. 1 but different numbers of layers
and nodes. The input and all of the hidden layers use the
tanh activation function while the output layer nodes use
the ReLU6 and leaky ReLU function for the mean and std
of the control action, respectively. Details on the ReLU6
and leaky ReLU functions can be found in (Agarap, 2018).

2.3 Reinforcement Learning

The reinforcement learning policy is computed based on
the OCP formulated in Problem (3). The method used
in this work to optimize the policy is a policy gradient
type method and the structure of the controller a feed-
forward neural network. To give the controller a head start,
a pre-training (supervised learning) scheme is used (for
example, see (Torabi et al., 2018)). The main idea is that
labelled data (X,Y ) are fed into the algorithm and the
algorithm will try to find a relationship between them and
then predict the output (Y ) given the state (X).

In a process control context, the data could be a trajectory
of states (xPT ) and the control action trajectory (uPT )
taken given the state trajectory. Then, the neural network

is trained so that if it sees a similar state xi, it would
return a control action which is close to the control ui. The
algorithm is shown in Algorithm 1.

Algorithm 1 Pre-training (supervised learning).

Input: Initialize policy with parameters θ = θ0, with
θ0 ∈ Θ0, learning rate α, number of iterations niter and
labelled data xPT and uPT
Output: Pre-trained policy.

for m = 1,. . . , niter do:
(1) Generate control actions, û, using the current policy

with parameters θ from the labelled state trajectory
xPT .

(2) Improve πθ by AdamOptimizer(û,uPT ) (Kingma and
Ba, 2017).

(3) m := m+ 1

After the pre-training, the controller is deployed into the
environment to begin the reinforcement learning. The
Reinforce (Williams, 1992) (Monte Carlo) algorithm was
used with the addition of baseline and decaying learning
rate. The algorithm is shown in Algorithm 2.

Algorithm 2 Policy Gradient Algorithm.

Input: Initialize policy parameter θ = θ0, with θ0 ∈ Θ0,
learning rate, its update rule α, m := 0, the number of
episodes K and the number of epochs N .
Output: policy π(·|·, θ) and Θ for m = 1,. . . , N do:

(1) Collect ukt ,x
k
t for T time steps for K trajectories along

with J(xkT ), also for K trajectories.

(2) Update the policy, using a policy
gradient estimate θm+1 = θm +

αm
1
K

∑K
k=1

[
(J(τττk)− b)∇θ

∑T−1
t=0 log

(
π(ukt |x̂

k
t , θ)

)]
(3) m := m+ 1

The update rule used in the algorithm (step 2 of Algorithm
2) is based on the one used by Petsagkourakis et al. (2020)
derived from the policy gradient theorem (Sutton and
Barto, 2018). In this update rule, b, is the baseline. Due to
the stochasticity of the policy coupled with Monte Carlo
sampling, the approximation of the expectation can have
high variance, however, a baseline can be used to reduce
this variance without a bias (Sutton and Barto, 2018). The
baseline used in this work is simply the mean expectation of
rewards under the current policy, this is the most commonly
used baseline in policy gradient projects and it has been
proven to be effective (Petsagkourakis et al., 2020).

While the baseline helps reducing the variance, the decaying
learning rate on the other hand helps the training to be
faster during the early epochs, and more stable during
the later epochs. In this work we use Reinforce for
simplicity of presentation, however, other policy gradient-
based algorithms (e.g. TRPO (Schulman et al., 2017a),
PPO (Schulman et al., 2017b)) can be used.

2.4 Full Approach

First, a bi-level optimization problem is formulated and
split into two problems, the design problem and the control



problem. The control problem is solved via reinforcement
learning, such that an optimal policy is produced. This
optimal policy is a controller in the form of an ANN
such that it takes states as inputs and outputs optimal
control actions. A range of design variables was defined
on which the controller was trained on. Second, the policy
is embedded into the design problem and solved using
standard MIP methods.

The approach is shown in Algorithm 3. For training the
controller, any policy optimization algorithm can be used
(e.g. TRPO (Schulman et al., 2017a), PPO (Schulman et al.,
2017a), DDPG (Lillicrap et al., 2015)) but for simplicity
the Reinforce algorithm with baseline (Sutton and Barto,
2018) is used in this work.

Algorithm 3 Full approach for simultaneous design and
control optimization using RL.

Input: Simultaneous process design and control problem.
Output: Optimal design and controller.

(1) State design-control simultaneous optimiza-
tion: formulate the design problem as a mixed-integer
dynamic optimization (MIDO) problem as presented
in (2).

(2) Optimal Control problem: Pose the optimal con-
trol problem (OCP) based on the design problem as
in (3).

(3) OCP as RL: Formulate the OCP to be solved via a
RL policy optimization framework.

(a) Pre-training: pre-train from an initial policy
either via simulation or plant data, this can be
done via supervised or apprenticeship learning,
amongst others.

(b) Policy learning via policy gradients: Begin
full- training using a policy optimization algo-
rithm.

(4) Embedded bi-level program: Embed the final
policy obtained from step 3 into the design (MIDO)
problem and solve via a MIP algorithm.

It is important to highlight, that without a policy based
method, the OCP is an optimization problem, hence the
integrated formulation in (2) is an intractable bi-level
optimization problem.

3. RESULTS AND DISCUSSIONS

The tank design case study from (Diangelakis et al., 2017)
was used to evaluate the approach. In this case study, it is
desired to design a simple tank with continuous inlet and
outlet flows. There are no reactions involved, the inlet flow
is in the form of a sinusoidal signal and it has a nominal
inlet flow of Fnom with a maximum deviation of Fdev. The
outlet flow is the manipulated variable of the PG (policy
gradient) controller. A set-point which depends on the
values of Fnom and Fdev is inputted into the controller.
Given the coupling of design and control, Fdev is a design
(upper level) variable, which is passed to the controller
(lower level) problem as a parameter to the policy.

The design problem was formulated as a MIDO problem
presented in (4). In order to reduce the size of the problem

while still maintaining a reasonable sampling time to
capture the dynamics of the sinusoidal signal, the final
time is set to allow only one period of the sinusoidal signal.

max
Vtank,Fdev,Fnom,V (0)

JSDC =

∫ 1

0

Fdevdτ

s.t.
dV (τ)

dτ
= Fin(τ)− Fout(τ)

Fout(τ) = αtV (τ)

Fin(τ) = Fnom + Fdev sin (τ/freq)

freq =
1

2π
VSP = Fnom + Fdev ≤ Vtank

errπθ =

∫ 1

0

||V (τ)− VSP ||
VSP

dτ

End-point constraints:

(1− ε/100)V (0) ≤ V (TF ) ≤ (1 + ε/100)V (0)

errπθ ≤ ε/100

Interior-point constraints:

at = πθ(Fin,t, VSP , Vt, Vt−1) ∀t ∈ {0, ..., nT − 1}

(4)

where τ is the continuous time variable, V (t) is the volume
of liquid in the tank, Fin(t) and Fout(t) are the inlet and
outlet flows in m3 s−1, respectively, a is the valve position
(1 is open, 0 is closed), and freq is the frequency of the
sinusoidal wave disturbance in s−1. VSP is the volume set
point, Vtank is the volume of the tank, errπθ is the integral
set point error, ε is the maximum allowable error and is
equal to 1 %, at is the control action output from the policy
applied to the system.

Constraints are enforced in the formulation to ensure the
initial and final states are the same, within some error
threshold, to achieve cyclic operation which allows for
extrapolation of the operation to larger time horizons. The
same error threshold, is also used for the maximum setpoint
deviation.

The goal of the design problem is to determine the
maximum deviation for which the controller is able to
maintain the desired set-point. While the goal of the OCP
is set-point tracking. The OCP is presented in (5).

max
πθ

JOCP = −10

nT∑
t=0

(Vt − VSP )2

s.t.
dV (τ)

dτ
= Fin(τ)− Fout(τ)

Fout(τ) = αtV (τ)

Fin(τ) = Fnom + Fdev sin (τ/freq)

freq =
1

2π
VSP = Fnom + Fdev ≤ Vtank
at = πθ(Fin,t, VSP , Vt, Vt−1) ∀t ∈ {0, ..., nT − 1}

(5)

where JOCP is the objective function, it is the sum of
negative squared setpoint errors. Therefore, in theory, the
maximum reward that is achievable is 0. This objective
function is also used for the training to calculate the total
reward earned at the end of each episode.



Fig. 2. Tank case study control performances.

In this case study, a proportional derivative (PD) controller
is used to compare against the approach proposed in this
work. The final results showed that the PG controller was
able to handle deviation values of up to 3.84 m3 s−1. The
control performances are plotted in Figure 2.

Figure 2 shows the performance of the controllers in the
tank case study at the MIDO solution averaged over
1000 simulations with 2 % measurement noise. It can
be observed that the PG controller outperforms the PD
controller. The PD control action shows a large variance on
its control action indicating very aggressive response. The
mean set-point error of the PD controller is two times larger
than the PG controller mean error. Furthermore, the PG
controller were able to perform better than the mpMPC
used by Diangelakis et al. (2017) (Fdev = 2.69ms−1) as
the PG controller managed to handle a higher maximum
deviation even with the presence of measurement noise.

4. CONCLUSIONS

In this work we proposed the use of RL to address
a long standing challenge for the process design and
control community; the simultaneous design and control
of sustainable chemical processes. It is shown that using
RL it is possible to address the otherwise intractable
nonlinear mixed integer dynamic bi-level optimization
problem. Through the case study, we show that the PG-
based controller was able to perform well in a wide range
of design variables enabling the optimization of the process.
Policy gradient-based controllers can handle measurement
noise and stochastic systems naturally and the final form
is an explicit function, which can be directly embedded
into optimization problems. For future work, we will add
the handling of constraints with high probability such
as in (Petsagkourakis et al., 2020), and a further hyper

parameter tuning scheme (e.g Snoek et al. (2012) Bayesian
optimization or other expensive black box optimization
techniques). We aim to address also harder and larger
problems in the near future.
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