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Abstract: Continuous fluidized bed spray granulation processes are known to be prone to
non-linear oscillations, which requires a stabilizing controller design. In this article, a purely
data-driven Koopman-based system linearization and control is proposed, which does not need
any prior model knowledge and uses only systems input-output measurements. The linearization
achieved by the Koopman embedding allows for linear-quadratic control design, which does not
depend on the operating point. The proposed method was validated in a simulation study of
a fluidized bed granulation process and was able to stabilize the particle size distribution in
different operating points.
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1. INTRODUCTION

Fluidized bed spray granulation (FBSG) processes allow
for generation of dust-less and free-flowing particles of
desired dimensions. Thus, it is widely used in chemical,
pharmaceutical, and food industries. Despite its impor-
tance, the dynamical properties of the process are often
not fully understood and the controller design remains a
challenging task. Different solutions were proposed, like
linear model predictive control (Bück et al. (2016)), robust
H∞ loop-shaping (Palis and Kienle (2012b)) or nonlinear
discrepancy based control (Palis and Kienle (2012a, 2014).
These approaches heavily depend on model accuracy and
are designed for a narrow band of operational regimes.
However, the dynamics of the fluidized bed spray granula-
tion is strongly dependent on the process conditions and
thus typically time-varying and modeled with considerable
uncertainties.

Recently, a data-driven Koopman operator based ap-
proach is emerging in modeling and control theory (Brun-
ton et al. (2016), Mauroy et al. (2020)). The idea here is to
lift the original states of a nonlinear system up to higher-
dimensional embedded coordinates, where the dynamics of
the system is approximately linear. It has shown successful
results in different fields, like mechanical and fluid dynam-
ics (Lusch et al. (2018)), chemical processes (Narasingam
and Kwon (2019)), power electronics (Maksakov and Palis
(2020)) and others.

In this paper, a data-driven Koopman based approach
is proposed for a global linearization of the fluidized
bed spray granulation process. It does not require model
knowledge and can be used with partially measured states.
To discover the higher-dimensional embedding a deep neu-
ral network is used. The resulting linear representation
of the system allows for the use of linear control theory
for controller design, like linear quadratic (LQ) optimal

control (Brunton et al. (2016), Kaiser et al. (2017)) or
linear model predictive control (Korda and Mezić (2018)).
The paper is organized as follows: in section 2 the model
of continuous bed spray granulation with internal product
classification is introduced. In section 3 the method of
data-driven identification of the Koopman-invariant sub-
space is given. Further, in section 4, a linear quadratic
controller is designed based on the identified linearized
system. Lastly, the performance of the proposed method
is shown using numerical simulations.

2. FLUIDIZED BED SPRAY GRANULATION

The granulator consists of a granulation chamber, an in-
jection nozzle, and a tube for particle withdrawal as shown
in Fig.1. The chamber contains a large number of particles,
which are constantly fluidized by an upstream flow of
heated gas. The injection nozzle sprays a suspension or a
solution to the main chamber, which moisturizes the gran-
ules. After drying the injected liquid leads to the growth
of the particles. In addition, part of the injected liquid
results in the generation of new nuclei. The withdrawal
tube in the lower part of the chamber provides an internal
classification of the product with an adjustable counter-
current gas flow. This classification flow sets the minimal
size of the particles, which are withdrawn from the gran-
ulator, where the smaller particles are blown back to the
main chamber. The described process configuration can be
described by population balance modeling (Randolph and
Larson (1971), Vreman et al. (2009)), which leads to the
following equation

∂n

∂t
= −G∂n

∂L
− ṅprod + ṅnuc. (1)

Here, the first term describes the growth of the particles,
the second term accounts for product withdrawal, and the
last term is related to the generation of new particles.



Fig. 1. Process scheme.

According to Vreman et al. (2009), the growth rate of the

particles depends on the injection rate V̇e, where the part
of injected liquid proportional to (1 − b) contributes to
the growth, and another part, which is proportional to b,
contributes to the generation of new nuclei. The growth
rate G is given as:

G =
2(1− b)V̇e

πµ2
, (2)

where µ2 stands for the second moment of the distribution
and can be calculated as follows:

µ2 =

∫ ∞
0

L2ndL. (3)

Droplets, which do not settle on the particles, get dried
by the heated airflow and create new nuclei. Here, it is
assumed, that the generation of new particles is normally
distributed with a medium diameter L0 and deviation σ0

ṅnuc =
bV̇e
1
6π

δ(L0, σ0), (4)

where δ(L0, σ0) is a normal distribution normalized with
its third moment:

δ(L) =
exp(− (L−L0)

2

σ0
)∫∞

0
L3exp(− (L−L0)2

σ0
)dL

. (5)

The proportionality factor b depends on the distance be-
tween the particle bed and the injection nozzle. According
to Vreman et al. (2009), it is assumed to have a linear
dependence, which is limited with a minimum value b∞
and maximum value of b = 1:

b = b∞ +max

(
0, (1− b∞)

hnoz − h
hnoz

)
. (6)

Here, hnoz is the height of the nozzle and h is the height
of the bed, which can be calculated from its volume V
assuming a constant bed porosity ε and using the cross-
sectional area of the main chamber A.

h =
V

(1− ε)A
=
π
∫∞
0
L3ndL

(1− ε)A
(7)
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Fig. 2. Step response of the third moment µ3 of the particle
size distribution for different injection rates V̇e.

The product withdrawal can be described by a Tromp
curve approximation (Rumpf (1990)) with a drain con-
stant K

ṅprod = K

∫ L
0
exp((L− L1)2/(2σ1))dL∫∞

0
exp((L− L1)2/(2σ1))dL

n. (8)

It represents the probability of particles with size L to be
withdrawn from the granulator with respect to the desired
classification diameter L1 and selectivity σ1.

To simulate the resulting population balance model, a
finite volume method with 150 uniform grid points along
the particle size coordinate L was used. The parameters
were adopted from Vreman et al. (2009), Palis and Kienle
(2012b) and are represented in Table 1.

Table 1. Model parameters

V̇e 1.68 · 10−4m3/s injection rate
ε 0.5 fluidized bed porosity
A 5m2 granulator cross-sectional area

hnoz 0.44m nozzle height
b∞ 0.028 minimum nucleation rate
L0 0.3mm medium diameter of nuclei
σ0 0.05mm standard deviation of nuclei diameter
L1 0.7mm medium classification diameter
σ1 0.05mm classification selectivity
K 1.92 · 10−41/s product removable rate

It is well-known and systematically studied, that below
a certain injection rate V̇e, limit cycles occur around the
steady-state of the particle size distribution (Vreman et al.
(2009), Schmidt et al. (2015), Neugebauer et al. (2017)).
For the parameters listed above, the system becomes
unstable for V̇e < 1.7·105mm3/s, which is also represented
in Fig.2.

3. DATA-DRIVEN KOOPMAN SUBSPACE
IDENTIFICATION

3.1 Koopman operator theory

Koopman operator theory allows for a linear representa-
tion of a nonlinear dynamical system through lifting its



state vector up to higher or in general infinite dimensions.
We consider a discrete-time nonlinear system with control
input of the following form.

xk+1 = F (xk, uk), (9)

Here, x is the state vector, u is the input vector and F is
the flow map, that propagates the state vector x forward
in time.

Initially the Koopman theory was developed by Koopman
(1931) for autonomous systems and later generalized to
allow for control inputs (Proctor et al. (2018)). Under the
assumption that the control inputs are not dynamically
evolving, the system (9) can be lifted up to an infinite-
dimensional space, where the dynamics of the system is
linear.

g(F (xk, uk), 0) = Kg(xk, uk) (10)

Here, g(·) is a nonlinear embedding into an infinite-
dimensional space, and K is the Koopman operator, that
linearly propagates the states of the system forward in
time.

To allow for Koopman analysis, a finite-dimensional rep-
resentation of the system is required. Thus, different data-
driven methods for Koopman invariant subspace approxi-
mations were proposed, like dynamic mode decomposition
(DMD) (Tu H. et al. (2014)), (Williams et al. (2015)),
kernel-based methods (O. Williams et al. (2015)) and
neural networks (Lusch et al. (2018), Takeishi et al. (2017),
Yeung E. et al. (2019)).

3.2 Data-driven Koopman subspace identification

The main idea here is to find a finite-dimensional mapping
and an approximation of the Koopman operator, that
embeds the nonlinear dynamics into a high-dimensional
space, where the system behavior is approximately linear.
Specifically, we try to identify the nonlinear transforma-
tion to the lifted coordinates z = φ(x, u), along with an
appropriate linear system matrix A, input matrix B and
output matrix C, such that:

zk+1 = Azk +Buk. (11)

yk+1 = Czk+1. (12)

For complex nonlinear dynamical systems it is often the
case, that not the entire state vector is measurable. In
worst case, only the measurements of the controlled output
are available. Thus, to capture the dynamics of the system,
time delayed vectors of the outputs y and inputs u are
constructed

Xk = [yk, yk−1, . . . yk−N ], (13)

Uk = [uk−1, . . . uk−N ]. (14)

To find a respective nonlinear transformation φ, a deep
neural network is used, which transforms the delayed
vectors to the embedded coordinates:

zk = φ(Xk, Uk). (15)

Note, that the delayed vector Uk does not contain the
current input value uk to avoid a nonlinear dependence
of intrinsic states zk from the current input. The overall

Fig. 3. Structure of Koopman-subspace identification pro-
cess.

structure of the resulting identification system is shown in
Fig.3.

The parameters of the proposed system are found through
back-propagation, minimizing the following loss functions:

(1) Embedded space linear output loss, which forces the
original output to be a linear combination of the
embedded states.

Lem = ‖yk − Cφ(Xk, Uk)‖22 (16)

(2) Output reconstruction loss, which penalizes the devi-
ation of predicted output from the measured value.
To capture long system dynamics, a prediction of M
steps is applied, which results in the following loss
function.

Lout =

M∑
i=1

‖yk+i − Czk+i‖22 (17)

(3) Embedded space linearity loss, which penalizes the
difference between the predicted value and the trans-
formed real measurements:

Llin =

M∑
i=1

‖φ(Xk+i, Uk+i)− zk+i‖22. (18)

This loss allows to discover a nonlinear transforma-
tion to the embedded coordinates, where the system’s
dynamic is linear.

The term zk+i in equations (17), (18) is calculated ac-
cording to (11) in recursive manner. An L1 regularization
is added for matrices A, B, and C during identification
procedure, to find a sparse and compact linear system
representation:

Lreg = ‖A‖1 + ‖B‖1 + ‖C‖1. (19)

Thus, the resulting loss function has the following form:

L =
α

M
(Lem + Lout) +

β

M
Llin + γLreg (20)

where α, β, γ are scalar weights.

The network uses the generated output trajectories for
training. The data from different experiments can be
utilized to form a sufficient training set.

3.3 Koopman subspace identification for fluidized bed
spray granulation

The presented population balance model is highly nonlin-
ear and can become unstable under certain operating con-
ditions. This leads to oscillations in the resulting particle



size distribution, which is undesired and requires a stabiliz-
ing control strategy. Identifying a linear representation of
the system would allow for easier controller design, system
stabilization, and quality control.

Thus, to derive a linearized model of the system, the
volume flow rate V̇e is chosen as an actuated variable

u = V̇e. (21)

The third moment of the particle size distribution is
used as the controlled output value, since it is correlated
with the bed mass and can be derived from pressure
measurements

y = µ3. (22)

Using the randomly generated input values, the corre-
sponding particle size distribution is calculated, using the
population balance model (1). After calculation of the
third moment of the distribution, the delayed vectors Uk
and Xk are composed, using a sampling time ts = 60s.

The neural network consists of 4 fully-connected layers
with ReLU nonlinearity. The number of inputs and out-

puts for each layer is set to be 2N-1
layer1−−−−→ N

layer2−−−−→ N/2
layer3−−−−→ N/4

layer4−−−−→ L respectively, where N is the length
of delayed vector and L is the dimension of the embedded
coordinates. The layer parameters were initialized accord-
ing to Gaussian distribution. The matrices A, B, and C
were initialized as a solution to the following linear system,
using Moore-Penrose inverse:[

zk+1

yk+1

]
=

[
A B
C 0

] [
zk
uk

]
(23)

For loss minimization, an Adam optimizer was used. The
values of the hyperparameters are shown in Table 2.

Table 2. Training parameters

N 60 length of the delayed vectors
M 30 number of prediction steps
L 10 dimension of the embedded state z
α 1 output loss weight
β 1 linearity loss weight
γ 10−6 L1 regularization weight
η 10−3 learning rate

The training data was scaled to the range [0,1]. The initial
conditions of the system were set to a stable region with a
particle size distribution, that corresponds to the injection
rate V̇e = 2 · 105mm3/s. The resulting input/output
trajectories, as well as their reconstructions are shown in
Fig. 4.

4. CONTROLLER DESIGN

The complex and nonlinear nature of the fluidized bed
spray granulation process makes controller design a chal-
lenging task. Although, a number of different model con-
trol approaches (Bück et al. (2016); Palis and Kienle
(2012b, 2014)) have been proposed, their performance
heavily depends on the model accuracy.

Using the data-driven Koopman-linearized system model,
a conventional linear quadratic control with integral action
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Fig. 4. Training trajectories with reconstructed values
of normalized third moment µ3 and corresponding
scaled uniform random input value V̇e used for system
identification.

(LQI) can be designed. After augmenting the system with
the integrating sum of the output error

z̃k =

[
zk
εk

]
=

 zk
k∑
i=0

(ri − yi)ts

 , (24)

where r is the desired set-point and y is the controlled
output of the plant, the gain vector K can be found by
solving the following discrete linear quadratic minimiza-
tion problem

J =

∞∑
k=0

(z̃Tk Qz̃k + uTkRuk). (25)

Here, Q and R are state and input weighting matrices and
z̃k is the augmented state vector.

Since according to (12), the measured output is a linear
combination of the embedded states z, a linear full-rank
transformation T can be found, such that:

yk = [1, 0, . . . , 0]Tzk. (26)

Thus, the resulting feedback control can be decomposed
in the following parts:

uk = −Kiεk −Klinyk −Knonlinφ(Xk, Uk), (27)

which contains an integral action, linear system output
feedback, and nonlinear states feedback. Fig.5 shows the
resulting structure of the proposed LQI control.

4.1 Results

The proposed control strategy was implemented in Matlab
together with the granulation process simulation and the
neural network feed-forward calculation. The constant
feedback gains are calculated once for a diagonal matrix
Q that mainly penalizes the linear output and error states
with value 1, and R is set to 5000 to limit the input signal.

Fig. 6 shows the resulting dynamics of controlled system
in the stable region. The proposed controller was able
to improve the dynamical performance during the step
response, compared to the open-loop system.



Fig. 5. Resulting structure of the proposed LQI-Koopman
control.
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Fig. 6. Step response from the stable region into the
unstable for the controlled and open-loop system.

Since Koopman linearization does not depend on any
linearization point, no parameter adaptation is needed for
different operational regimes. Fig. 7 shows the resulting
system response for a step input from the stable region
with injection rate V̇e = 2 · 105 mm3/s into the unstable

region with V̇e = 1.4 ·105 mm3/s. Despite the difference in
the operating point, the proposed control system is able to
stabilize the output without degradation in the dynamical
performance of the system. The stabilization of the third
moment also results in a stable particle size distribution,
as shown in Fig. 8, 9.

5. CONCLUSION

In this paper, a purely data-driven approach for the control
of a fluidized bed spray granulation process was proposed,
that does not require any prior model knowledge. Based
on the Koopman operator theory, a finite-dimensional
Koopman-invariant subspace was approximated with deep
neural networks. A nonlinear transformation was found,
that maps the states of the nonlinear system to the em-
bedded coordinates, where the dynamics of the system is
approximately linear. This allows for system linearization,
that does not depend on an operating point. Based on the
Koopman-linearized coordinates, an LQI controller was
designed. It was shown, that the proposed controller can
successfully stabilize the particle size distribution and does
not depend on the operating point. Thus, it can be used
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Fig. 7. Step response from the stable region into the
unstable for the controlled and open-loop system.

Fig. 8. Particle size distribution for a step response from
the stable into the unstable region without control.

Fig. 9. Particle size distribution for a step response from
the stable into the unstable region for the controlled
system.



for different regimes of the granulation process, without
any parameter adjustment.
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