
Generalized System Identification for
Nonlinear MPC of Highly Nonlinear MIMO

Systems ⋆

Ewan Chee and Xiaonan Wang ∗

∗ Department of Chemical & Biomolecular Engineering, Faculty of
Engineering, National University of Singapore, 4 Engineering Drive 4,
Singapore 117585, Singapore (e-mail: {chejxec, chewxia}@nus.edu.sg).

Abstract: Advanced model-based control strategies like Model Predictive Control can offer
superior control of key process variables for multiple-input multiple-output systems. The quality
of the system model is critical to controller performance and should adequately describe the
process dynamics across its operating range while remaining amenable to fast optimization.
Mechanistic models might be difficult to construct or might evaluate too slowly for fast-sampling
purposes, while System Identification methods that yield linear models might only offer effective
control within a limited range. This work thus articulates an integrated System Identification
procedure for deriving black-box nonlinear continuous-time multiple-input multiple-output
system models for Nonlinear Model Predictive Control. In this piece, seven candidate models
were trained on data sets generated from two different methods and integrated into a Nonlinear
Model Predictive Controller for a highly nonlinear Continuous Stirred Tank Reactor system.
This procedure successfully identified system models that enabled effective control in both servo
and regulator problems across wider operating ranges, given that the data set is sufficiently
uniform across the operating range. These results were subsequently built upon in a follow-up
work. This demonstration of how such system models could be identified for Nonlinear Model
Predictive Control without prior knowledge of system dynamics opens further possibilities
for direct data-driven methodologies for model-based control which, in the face of process
uncertainties or modeling limitations, allow rapid and stable control over wider operating ranges.

Keywords: Nonlinear model predictive control, black-box modeling, system identification,
machine learning, industrial applications of process control.

1. INTRODUCTION

The manufacturing industries are perpetually challenged
by the need to develop processes that convert raw mate-
rials into useful products in more reliable and sustainable
ways, and this has led to strong and sustained interest
in the research of effective control strategies (?). Achiev-
ing tight control across a process’ entire operating range
is especially challenging, with conventional methods like
Proportional-Integral-Derivative (PID) controllers being
ill-equipped to handle systems that are highly nonlin-
ear around their operating points (?). This motivates
the study of advanced model-based control strategies like
Model Predictive Control (MPC) for these systems.
MPC incorporates knowledge about the process through a
system model and solves a dynamic optimization problem
at each time step to yield an optimal control sequence,
applying the first control action in the sequence to the
system before proceeding to re-solve the problem at the
⋆ The authors thank the MOE AcRF Grant in Singapore for finan-
cial support of the projects on Precision Healthcare Development,
Manufacturing and Supply Chain Optimization (R-279-000-513-133)
and Advanced Process Control and Machine Learning Methods for
Enhanced Continuous Manufacturing of Pharmaceutical Products
(R-279-000-541-114).

next time step. MPC natively supports Multiple-Input
Multiple-Output (MIMO) formulations and also allows
system constraints to be directly included in the problem
formulation, explicitly representing process limits that en-
sure plant safety and reliability. MPC has seen successful
application in industries ranging from oil refining to chem-
ical production (?).
The system model plays a determinant role in MPC, and
should adequately describe the process dynamics across
its operating range while being simple enough to allow fast
optimization (?). These models could either be constructed
from first principles, which might be difficult and costly to
develop for complex processes, or derived from empirical
data through System Identification (SysID). These mod-
els could be linear, nonlinear, hybrid or nonparametric,
among others, and MPC products have typically relied
on linear models to exploit algorithms that optimize effi-
ciently (?). Successful applications of linear MPCs (LM-
PCs) for continuous pharmaceutical tablet manufacturing
processes were reported in ? and ?.
LMPC might struggle to offer effective control outside a
limited operating window (?). Nonlinear MPC (NMPC),
by employing nonlinear system models and system con-
straints, can allow better process representation over a

wider operating range. This comes however at the expense
of needing to solve non-convex optimization problems
quickly and precisely (?).
Recent advances in computing and statistics have promised
to unlock the potential of data-driven Machine Learn-
ing (ML) methods. This could improve the viability of
black-box SysID methods in deriving system models for
NMPC that deliver effective control over a wider operating
range. This is useful when process understanding is limited
to begin with, or when first-principles models take pro-
hibitively long to evaluate for fast-sampling applications.
?? demonstrated the use of RNNs and ensemble techniques
to generate MIMO system models for NMPC of a CSTR
system, showing that these NMPCs performed better than
LMPCs at rejecting process disturbances and showcasing
parallel implementations of these that considerably re-
duced solution times.
This work endeavors to further explore the potential of ML
in identifying MIMO system models from empirical data
which enable NMPC to deliver rapid and stable control
over a wider operating range, evaluating both control
performance and solution times on both set-point tracking
and disturbance rejection scenarios to ensure the proposed
solution’s practicality in real-world industrial settings. We
articulate an integrated, overarching approach for learning
the dynamics of continuous-time systems under control.
We subsequently apply this framework to develop ML-
NMPCs for a CSTR system exhibiting highly nonlinear
dynamics, benchmarking these controllers’ performance
against an NMPC with the exact system model.
This work is organized as follows. Section 2 frames this
study by defining the CSTR system and the control
scenarios. Section 3 explicates the generalized black-box
SysID methodology and presents the MPC formulation.
Section 4 presents results and discussions.

2. PROBLEM DEFINITION

In the following exposition, x ∈ Kq is a column vector,
with K representing some field and q ≥ 1. The notation
[a, b] represents a row vector when (a, b) ∈ K2, and the
T subscript represents the vector transpose operation,
such that [a, b]T is a column vector. The ++ symbol
represents column vector concatenation, and it returns
another column vector, such that x1++x2 = [xT

1 , x
T
2]

T and
++i∈{1,...,n}xi = [xT

1 , ..., x
T
n]

T , where xi ∈ Kqi . An n × p
matrix with values in K is denoted Mn,p(K), with n-order
square matrices are Mn(K). The ++ symbol is also used
to represent the vertical concatenation of matrices with
the same number of columns, such that ++i∈{1,...,n}Bi =

[BT
1 , ..., B

T
n]

T , where Bi ∈ Mqi,p(K). Sets are represented
by {1, ..., k}. Closed intervals are defined as [α;β], with α
and β real numbers. Given x(t) ∈ Kq a continuous-time
vector-valued quantity, where t ∈ R+, x[k] represents its
value associated with the discrete time-step k, such that
x[k] = x(tk), where tk is the real time associated with
the discrete time-step k. ∆ finally represents the difference
operator, such that ∆x[k] := x[k + 1]− x[k].

2.1 Plant Model

The single CSTR system for this study houses the reaction
described in Eq. 1, where A is the feed species, R the
desired product, and S the undesired by-product. Eqs. 2 to
4 contain non-dimensionalized expressions for the system’s
dynamical behavior:

A
k1

�
k4

R
k2

�
k3

S (1)

dCA

dt
= q[CA0 − CA]− k1CA + k4CR (2)

dCR

dt
= q[1− CA0 − CR] + k1CA + k3[1− CA − CR]

− [k2 + k4]CR

(3)

kj = k0,j exp

{[
− E

RT0

]
j

[
1

T
− 1

]}
, j ∈ {1, 2, 3, 4} (4)

where Ci∈{A,R,S} ∈ R+ is the species’ reactor concen-
tration, CA0 ∈ R+ the feed concentration of A, q ∈ R+

the feed and the exit flow rate, kj∈{1,...,4} ∈ R+ the reac-
tion rate constants, k0,j∈{1,...,4} ∈ R+ the Arrhenius pre-
exponential constants, [E

RT0
]j∈{1,...,4} ∈ R+ the normalized

activation energies, and T ∈ R+ the system temperature.
q and T are the manipulated variables in this study.
The system’s state representation is as follows:

ẋ = f(x, u) (5)
y = I2x+ ϵ (6)

where x := [CA, CR]
T and u := [q, T]T are the state and

control vectors respectively, y the observed vector with I2
a size-2 identity matrix, and f : R2

+ × R2
+ → R2 a general

nonlinear function. ϵ is a random variable corresponding
to measurement noise.
Fig. 1 shows the system’s steady-state conditions as a
function of T when q is 0.8 and at its nominal point.
To simplify the system, it is assumed that the low-level
flow and temperature control loops have negligible dead
times and present no steady-state errors. The system’s
set-point was selected to maximize the ratio of CR to
CA. This corresponds also to maximizing product yield
and minimizing any downstream separations costs. It can
be observed that strong non-linearities exist in how both
CA and CR vary with T at the set-point, which suggest
that linear controllers could perform well only within a
narrow operating range. There is also input multiplicity,
since two different T values could yield the same value for
CR, which presents problems for stable control in practice
(?). Process control of this system at this set-point serves
thus as a relevant and interesting control problem.

2.2 Control Scenarios

Controller performance was evaluated based on 3 sce-
narios. The first scenario was a servo control problem
representing ±5% step changes to the cR set point. This
step size was selected because the control actions needed
to stabilize the system at the new set-points are large
enough to pose a control problem which is challenging
enough to be studied meaningfully. Each step lasted for
5 time units (tus) for a total experimental length of 20
tus. The second and third scenarios were regulator control

Fig. 1. System steady state conditions (q = 0.8).

problems corresponding to “reactor startup” and “upset
recovery” respectively. These two process disturbances lay
at opposite sides of the set-point, with the former having
low T and CR values and the latter having an abnormally
high T value. A process controller would therefore need to
optimize correctly for T values within an extended range
of 0.8 to 1.1 to perform well in both these scenarios. All
experimental runs for these two scenarios lasted for 5 tus.

3. METHODOLOGY

3.1 Nonlinear MPC Control

We define the cost function J at a given time-step k ∈ N:
J(∆U) := tr((Y − Y ∗)TQ(Y − Y ∗) + ∆UTR∆U) (7)

where ∆U := [∆u[k],∆u[k + 1], ...,∆u[k + m − 1]]T is
the control sequence over the control horizon m ∈ N∗,
Y := [y[k + 1|k], ..., y[k + p|k]]T the state trajectory over
the prediction horizon p ∈ N∗, Y ∗ the set-point over
p, and Q and R diagonal non-negative weight matrices
whose coefficients reflect the relative importance of the
corresponding terms in the cost function. tr(·) represents
the trace of the matrix. The control actions are applied in a
Zero-Order Hold (ZOH) fashion throughout the sampling
interval, such that u(t) = u[k],∀t ∈ [tk; tk+1[.
The NMPC problem formulation is thus as follows:

min
∆U

J(∆U) s.t. (8)

Y = F(x[k], u[k],∆U ++ 0p−m,2) (9)
∆umin ≤ ∆u[l] ≤ ∆umax,∀l ∈ {k, ..., k +m− 1} (10)

umin ≤ u[l] ≤ umax,∀l ∈ {k, ..., k +m− 1} (11)
ymin ≤ y[l] ≤ ymax,∀l ∈ {k + 1, ..., k + p} (12)

where F is a nonlinear function generating the state
trajectory given the system’s initial state and the control
sequence, and 0p−m,2 a zero matrix of dimension (p−m)×
2. The concatenation of 0p−m,2 is equivalent to defining
∆u[l] = 0,∀l ∈ {k+m, ..., k+p−1}, then appending these
zero values to ∆U such that the resulting matrix has p
rows. u thus remains constant after the control horizon.
We note that F can be generated from f as Eq. 13 shows:

F(x[k], u[k],∆U ++ 0p−m,2) = [G(1), ...,G(p)]T (13)
where G(l) := x(tk) +

∫ tk+l

tk
f(x(τ), u(τ))dτ, ∀l ∈ {1, ..., p}.

Eqs. 10 to 12 represent constraints on the control actions’
rates of change, constraints on their magnitude, and con-
straints on the system’s output, respectively.

This NMPC problem is a constrained nonlinear opti-
mization problem which can be solved using active set
or interior point methods. This problem was solved us-
ing the Sequential Least Squares Quadratic Programming
method which was implemented in optimize.minimize
from SciPy (version 1.5). The constraints on the control
actions’ magnitude and system outputs, where are Eqs. 11
and 12 respectively, were manifested as soft constraints,
with the coefficients of their penalty terms in the objective
function taken to be 1000. The nonlinear optimizer was
initialized with values sampled from U([−10−3, 10−3]) at
the first time step and was warm-started with the solution
from the previous time step in subsequent time steps. For
this work, the step size of the controller hNMPC = 0.1 tu.

3.2 Regression Pipeline

The system models for NMPC are general nonlinear func-
tions whose form might not be known a priori. The regres-
sion problem is thus concerned with inferring them from
the available data, which consists of X̃ := [x̃i]

T
i∈{1,...,N}

the design matrix with {x̃i}i∈{1,...,N} the data set of size
N ∈ N∗, and Ỹ := [ỹi]

T
i∈{1,...,N} the labels matrix with

{ỹi}i∈{1,...,N} the set of labels associated to {x̃i}.
The full data set is split into training, validation and test
sets. In this work, 60% of the data set is assigned to the
training set, 20% to the validation set and 20% to the test
set. We note Itrain, Ival and Itest the set of indices of X̃
corresponding to these sets, with card(Itrain) = Ntrain,
card(Ival) = Nval and card(Itest) = Ntest, such that
Ntrain + Nval + Ntest = N . X̃train := [x̃i]

T
i∈Itrain

is the
training design matrix with Ỹtrain := [ỹi]

T
i∈Itrain

its labels
matrix. X̃val, Ỹval, X̃test and Ỹtest are defined similarly.
Data preprocessing encompasses a broad set of strategies
to prepare the data set for the model training phase in
ways that facilitate the learning of models that generalize
well. It generally involves data cleaning, which serves to
improve the quality of the data set by removing outliers
that might have resulted from sensor faults or data input
errors, and feature engineering, which can take the form
of feature transformation, generation, or extraction.
In this work, we demonstrate the generation of poly-
nomial and interaction features that represent higher-
order and coupled nonlinear interactions. We pose X̃ =
[X̃j]j∈{1,...,Nf}, where X̃j∈{1,...,Nf} are feature vectors with
Nf ∈ N∗ the number of features. Equation 14 formalizes
the feature generation procedure of degree d ∈ N∗:

X̃(d) = [X̃p1

1 X̃p2

2 . . . X̃
pNf

Nf
](p1,...,pNf

)∈{1,...,ℓ}Nf s.t.
p1+···+pNf

≤ℓ,∀ℓ∈{1,...,d}

(14)

Data standardization is also performed to allow all features
to be considered equally during model training. Equation
15 describes the data standardization procedure:

X̃
(d)
·,std =

[
X̃

(d)
·,j − ¯̃X

(d)
⋆,j

σ̂⋆,j

]
j∈{1,...,N(d)

f
}

(15)

where X̃
(d)
·,j represents the j-th column of X̃

(d)
· , ¯̃X

(d)
⋆,j

the sample mean of X̃
(d)
⋆,j , σ̂⋆,j the population standard

deviation of X̃
(d)
⋆,j , and N

(d)
f ∈ N∗ the total number of

polynomial and interaction features. · is a placeholder
referring either to the training, validation or test sets. If ·
refers to either X̃train or X̃val, ⋆ refers to X̃train. If · refers
to X̃test, ⋆ refers to X̃train ∪ X̃val. This mapping of · to ⋆
is done to prevent data leakage.
The model training phase involves solving for a prediction
function f such that ỹ ≈ f(x̃). Suppose that we have
n candidate models, i.e. n different regression forms for
f . For each fi∈{1,...,n}, we solve the MSE minimization
problem in Eq. 16:

θ̂i = argmin
θi∈Θi

1

Ntrain

∑
j∈Itrain

(ỹj − fi,θi(x̃j))
2 (16)

where Θi represents the parameter space for fi. fi := fi,θ̂i
finally represents the solution to this regression problem.
Let ηi ∈ Hi be the set of hyperparameters for fi. Hyper-
parameter Optimization (HO) involves training fi with
different ηi, then selecting η̂i which satisfies Eq. 17:

η̂i = argmin
ηi∈Hi

1

Nval

∑
j∈Ival

(ỹj − fi,θ̂i;ηi
(x̃j))

2 (17)

Bayesian Optimization (BO) was employed in this work
for HO, and the Optuna (version 2.0.0) package in Python
was used in this work.

3.3 Regression Formulation for Generalized Black-Box
Estimation in System Identification for NMPC

As we propose directly learning a representation for f in
the continuous-time state representation shown in Eq. 5,
we pose x̃j := [CA, CR, q, T]

T
j representing the features

for data point j ∈ Itrain, with ỹj :=
[
dCA

dt , dCR

dt

]T
j

the
associated labels. To extract ỹj from x̃j , the difference
between the concentration measurements before and after
the ZOH is taken:

ỹj =

[
CA,j(h)− CA,j(0)

h
,
CR,j(h)− CR,j(0)

h

]T
(18)

where the time at the start of the ZOH is taken to be zero.
h is taken as 0.1 time units (tus).
The regression forms fi studied in this work are polyno-
mial regression, Decision Tree (DT) regression, k-Nearest
Neighbors (kNN) regression, Ensemble regression, Extra
Trees (ET) regression, Gradient Boosted (GB) regression
and Random Forest (RF) regression.

3.4 Data Generation Procedure

The CSTR system is numerically simulated with a lin-
ear multistep method implemented through the LSODA
option in integrate.solve_ivp in the SciPy package
(version 1.5). To simulate measurement error, a Gaussian
noise ϵ ∼ N (0, 10−3) is included in every measurement of
CA and CR. Given the range of values for CA and CR, this
corresponds to a measurement error of ∼1%.
This study studies two methods for generating the data
set from simulation experiments. The “Uniform” method
involves randomly sampling x̃j from U([x̃j,min, x̃j,max]),
where U represents a Uniform distribution. A random

sample of size N is generated, and the simulation is evolved
for h tus for each point j ∈ {1, ..., N}. This method ensures
that the resulting data set uniformly covers the controller’s
operating range, allowing ML models that perform well
within this entire range to be learnt more easily. However,
as this procedure involves impeccable system preparation
and measurement, it is highly unfeasible in practice. This
method serves therefore as a limiting case.
The “Oscillatory” method involves oscillating q and T
at different frequencies within predefined bounds around
specified values, then evolving the simulation with this
control sequence. The length of one experiment was
kept to around 5 tus, with the number of cycles within
the ranges of q and T varying from 0 to 5. Experi-
ments were also performed for different starting values
and different ranges for q and T . Given an experiment
([CA, CR, q, T]

T
i)i∈0,...,Nsim

with Nsim ∈ N∗ the total
number of time steps, x̃j := [CA, CR, q, T]

T
j and ỹj :=[

CA,j+1−CA,j

h ,
CR,j+1−CR,j

h

]T
,∀j ∈ {0, ..., Nsim − 1}. The

data from all the experiments was then combined and
processed to yield X̃ and Ỹ .

3.5 ML-NMPC Integration

After obtaining the system models from the black-box
SysID pipeline, they are integrated into the ML-NMPC
and used to generate predictions for dCA/dt and dCR/dt,
which themselves are used to evolve CA and CR in time.
Tuning of the ML-NMPC control parameters is done
before testing its closed-loop performance on the case
study. In this work, this consists of modifying m to
minimize the Weighted Integrated Absolute Error (WIAE)
for a ±5% set-point step experiment:

WIAE :=

∫ tf

t0

W∥y(t)− y∗(t)∥1dt (19)

where W ∈ M2(R+) is a weight matrix, and t0 ∈ R+

and tf ∈ R+ the start and end times of the experiment
respectively. p = 5 was taking to be fixed in this work. The
WIAE was selected as the figure of merit for its simple
interpretation, though other controller tuning statistics
that explicitly include ∆U or that have other forms
could also be used without any loss of generality of
this procedure. In this study, W = diag([1, 5]), so CR

deviations are punished 5 times more than CA deviations.

4. RESULTS AND DISCUSSION

4.1 Nonlinear MPC with Exact System Model

Fig. 2 demonstrates stable closed-loop performance of
the NMPC for all three control scenarios, validating the
use of NMPC as a benchmark for effective control of
this system. The step experiment, startup, and recovery
scenarios took 7.77 s, 2.75 s and 2.87 s to solve respectively,
demonstrating average per-iteration solution times in the
order of 0.1 ms.

4.2 Black-Box Estimation in System Identification for
NMPC with Uniform Data Set

Fig. 3 shows the validation and test scores for the tuned
models for each candidate model on the Uniform data set.

Fig. 2. NMPC in the step (left), startup (center) and
recovery (right) experiments.

Fig. 3. R2 scores (left) and MSE values (right) for the
Uniform data set.

Fig. 4. ML-NMPC on Uniform data set in the step (left),
startup (center) and recovery (right) experiments.

Fig. 5. ML-NMPC on Uniform data set against exact
NMPC in the step (left), startup (center) and recovery
(right) experiments.

For all candidate models except kNN, the validation and
test R2 values exceeded 0.98, suggesting that these models
generally returned good estimates for dCA/dt and dCR/dt
given the current system state and control action.
Fig. 4 shows ML-NMPC performance with system models
from polynomial regression, GB and DT, while Fig. 5 com-
pares the NMPC with the exact plant model against ML-
NMPCs with polynomial regression and bagged regression
models. Fig. 6 plots the results. Solving the ML-NMPC
problem exceeded 20 mins for the remaining candidate
models, suggesting that they evaluated too slowly to be
feasible for fast-sampling applications.
Closed-loop control performance of the ML-NMPC with
either polynomial models or bagged models was stable and
approached the exact NMPC benchmark, with effective
set-point tracking and disturbance rejection, and no per-

Fig. 6. Performance comparisons for ML-NMPC with the
Uniform data set.

Fig. 7. ML-NMPC against NMPC on Oscillatory data set
in the step (left), startup (center) and recovery (right)
experiments.

manent error. The ML-NMPC with the polynomial model
also demonstrated average per-iteration solution times in
the order of 1 ms, though it remains an order-of magnitude
slower than the exact NMPC. For the bagged model,
evaluation times grew to twice that of the polynomial
model. It was observed that the added model complexity
from bagging did not translate to tighter control, with this
possibly indicating model over-fitting.
For DT and GB, which are tree-based models, control per-
formance was extremely poor except for GB in the upset
recovery scenario. This observation might be attributed to
two reasons. Firstly, DT and GB showed poorer validation
and test scores than the polynomial models, which might
suggest that, while R2 values above 0.98 were ultimately
achieved, the estimates for dCA/dt and dCR/dt from these
tree-based models were still not good enough for effective
ML-NMPC control. Secondly, as tree-based models are
piece-wise constant functions (?), optimizers like SLSQP,
which depend on good local gradient or Hessian approxi-
mations, might not function well.

4.3 Black-Box Estimation in System Identification for
NMPC with Oscillatory Data Set

The candidate models were trained and tested with the
Oscillatory data set, with the hyperparameters for each
candidate model identical to those learned in Section 4.2.
Fig. 7 compares the exact NMPC against ML-NMPCs
with GB and DT models. The ODE solver did not converge
for the polynomial models because the predicted CA

and CR values grew too quickly, resulting in overflow.
This could be explained by their poor test performances,
suggesting that they gave poor estimates for dCAdt and
dCRdt. Solving the ML-NMPC problem exceeded 20 mins
for the remaining candidate models, suggesting again that
they evaluated too slowly to be feasible for fast-sampling
applications.
Closed-loop control of ML-NMPC was completely inef-
fective in this case. Three reasons might explain this

Fig. 8. Scatter matrices for the Uniform (left) and Oscil-
latory data sets (right).

observation. Firstly, as tree-based models were employed
here, their piecewise-constant nature might not be suitable
for solvers that depend on good gradient and Hessian
estimates. Secondly, HO on this data set could have al-
lowed models that generalize better to be learned. This
was not performed in this piece and has been explored
in a fuller version of this work. Thirdly, the Oscillatory
method might not have yielded a “balanced” data set
which provided an even representation across the system’s
operating region. The scatter matrices for the data from
both data sets are shown in Fig. 8.
An “unbalanced” data set could reduce the model’s gen-
eralization ability in regions which are poorly represented,
negatively affecting the quality of dCAdt and dCRdt pre-
dictions there. When the goal of an MPC is to provide
rapid and stable control over the entire operating range, a
data set like the Uniform data set which evenly represents
this range might therefore be desired.

5. CONCLUSION

In this study, a full SysID pipeline for deriving black-box
nonlinear system models for NMPC of highly nonlinear
MIMO systems was articulated, with this pipeline being
able to accommodate different candidate models. Two
different data generation methods for the ML task were
studied, and an ML-NMPC formulation was presented
which employs the ML system models as approximations
to the system’s continuous-time state representation.
Three control scenarios were identified for a MIMO single
CSTR system exhibiting highly nonlinear dynamics. It
was shown that an ML-NMPC with a polynomial system
model, like an exact NMPC, succeeded in achieving rapid
and stable control for all three scenarios, given that the
data set is sufficiently uniform across the controller’s op-
erating range. Tree-based models were observed to per-
form poorly as system models for ML-NMPC, with this
potentially due to their piecewise-constant nature. When
more realistic data sets were used, ML-NMPC did not
perform well in any of the three scenarios, with this bearing
testament to the inherent difficulty of this control problem.
A follow-up work has employed an input signal consisting
of simultaneous random step changes for all manipulated
variables and has succeeded in identifying system models
for ML-NMPC with this input which enabled effective
control in both servo and regulator problems.

