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Abstract: This paper proposes a novel proportional-integral observer (PIO) based high-order
data-driven iterative learning control (HODDILC) for nonlinear batch processes with non-
repetitive disturbances subject to input constraints. First, an equivalent dynamic linearization
data model (DLDM) with an uncertainty term arising from the nonrepetitive disturbances is
constructed in the batch direction. Based on the established DLDM along with a gradient
estimation algorithm, a data-driven PIO is then designed to estimate the uncertainty term
along the batch direction, followed by designing a HODDILC law in terms of the tracking errors
over more than one previous batches and control inputs in the previous time instants of the
current batch. Using the contraction mapping principle and matrix theory, rigorous convergence
analysis is conducted in the iteration domain. A notable advantage of the proposed design is
that only input and output measurement data are used rather than a process model. Finally,
an illustrative example from the literature is given to demonstrate the effectiveness and merit
of the proposed method.

Keywords: Nonlinear batch processes, nonrepetitive disturbances, input constraints,
proportional-integral observer, data-driven iterative learning control.

1. INTRODUCTION

Batch processes have been widely applied in industry
such as industrial injection molding (Gao et al. (2001))
and pharmaceutical crystallization (Nagy (2009)) in recent
years due to its high flexibility and versatility. Over
the past decades, tremendous control methods have been
developed for such processes, see, e.g., Wang et al. (2009);
Ahn et al. (2007) and the references therein. Among
these methods, iterative learning control (ILC), as a class
of intelligent control method, has been regarded as an
effective control strategy to gradually improve the control
performance by learning the repetitive information from
the previous executions.

ILC has gained increasing attention in industry and a-
cademia since it was first proposed by Arimoto et al.
(1984). It is known that the conventional ILC, also known
as open-loop ILC, can realize perfect tracking for linear
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or nonlinear systems with completely repetitive features,
and bounded tracking in the presence of nonrepetitive un-
certainties (Meng and Moore (2017)). However, only error
convergence along the batch direction was addressed while
the system dynamics in the time domain was neglected.
This may result in poor even unacceptable dynamic per-
formance in the first few batches, especially for the open-
loop unstable processes. To further improve the tracking
performance, real-time feedback control was incorporated
into the ILC design based on 2D/repetitive system the-
ory (Shi et al. (2006); Hao et al. (2020); Rogers et al.
(2005)). It should be noted that all the above mentioned
ILC methods require some basic model information for the
learning law design or convergence analysis.

Due to the development of modern industrial processes
with large scale and high complexity, modeling a prac-
tical process accurately by the first principle or system
identification is not an easy task. Even the mathematical
model of a process can be established, it may suffer strong
nonlinearity, time-varying parameters and high orders etc.,
hindering its application in control design and stability
analysis. To circumvent this issue, data-driven control has



attracted a lot of attention in recent years by using only
the input and output measurement data (Hou and Jin
(2013)). Meanwhile, some developments on data-driven
ILC (DDILC) have been continuously reported, see, e.g.,
Chi et al. (2018a,b); Janssens et al. (2013) etc. In Chi et al.
(2018a), a high-order DDILC (HODDILC) was proposed
for nonlinear repetitive systems, where additional control
input of previous time instants in the current batch was
adopted for input update to improve the transient perfor-
mance. To track the desired values at the endpoint of the
batch operation, a HODDILC was developed to enhance
the tracking performance with faster convergence (Chi
et al. (2018b)). However, all nonlinear uncertainties are
lumped into the so-call pseudo partial derivative or pseudo
gradient, which may be too difficult to be well estimated if
the considered systems are too complex. Recently, an ex-
tended state observer (ESO) based DDILC was developed
in Hui et al. (2019) for a permanent magnet linear motor
with initial shifts and disturbances. However, no effective
guideline was given for the tuning of ESO gain. For non-
linear nonaffine systems with nonrepeatable uncertainties,
Chi et al. (2020) proposed an observer-based DDILC such
that the gradient and uncertainty term in DLDM could be
separately estimated in the iteration domain. Moreover,
input constraints are commonly unavoidable in practical
applications due to the physical limitation of actuator.
To the best of our knowledge, disturbance observer based
HODDILC for unknown nonlinear batch processes with
nonrepetitive disturbances and input constraints has not
been fully explored, and therefore motivating this work.

In this paper, a proportional-integral observer (PIO) based
HODDILC method is proposed for nonlinear nonaffine
batch processes with nonrepetitive disturbances subject to
input constraints by using tracking error over more than
one batches and control inputs in previous time instants of
the current batch. Convergence of tracking error and the
boundedness of the estimated parameters along the batch
direction are rigorously analyzed. The effectiveness of the
proposed design is validated by an illustrative example.

Notations: Z = {1, 2, . . .}, Z+ = {0, 1, . . .}, ZN =
{0, 1, . . . , N} for any N ∈ Z+. Rn and Rn×m denote
n-dimensional Euclidean space and n × m real matrix
space, respectively. I or 0 indicates the identity or zero
matrix (vector) with appropriate dimensions. ∥ · ∥ is the
consistent matrix norm. For a matrix A, A⊤ denotes its
transpose. For any function fk(·), denote by ∆fk(·) =
fk(·)−fk−1(·) a difference function in the iteration domain.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider a discrete-time nonlinear batch process with
nonrepetitive disturbances described as follows

yk(t+1) = f(yk(t), . . . , yk(t−ny), uk(t), . . . , uk(t−nu), dk(t)), (1)

where t ∈ ZN−1 and k ∈ Z are the time and batch indices;
N is the length of each batch; yk(t) ∈ R and uk(t) ∈ R are
the system output and control input, respectively; ny and
nu are two unknown system orders; f(·) is an unknown
nonlinear nonaffine scalar function; dk(t) is the nonrepet-
itive and bounded disturbances satisfying |dk(t)| ≤ βd
for any t and k. Without loss of generality, the initial

conditions in (1) are assumed as yk(0) = y0 for all k, and
u0(t) = 0 for any t, where y0 is a constant.

Following the similar way in Chi et al. (2020), the system
output can be reformulated as

yk(1) = f(yk(0), uk(0), dk(0)) , g0(yk(0), uk(0), dk(0)),

yk(2) = f(yk(1), yk(0), uk(1), uk(0), dk(1))

= f
(
g0(yk(0), uk(0), dk(0)), yk(0), uk(1), uk(0), dk(1)

)
, g1(yk(0), uk(1), uk(0), dk(1), dk(0)),

.

..

yk(t+ 1) = f
(
yk(t), . . . , yk(t− ny), uk(t), . . . , uk(t− nu), dk(t)

)
, gt(yk(0), uk(t), . . . , uk(0), dk(t), . . . , dk(0)),

where gt(·) is a compound function of f(·).
Assumption 1. (Chi et al. (2018a)) The nonlinear function
gt(·) is continuously differentiable with respect to its
arguments.

Assumption 2. (Chi et al. (2018a)) The vector-valued non-
linear function ggg(·) is globally Lipschitz, i.e.,

∥ggg(y1,uuu1, ddd1) − ggg(y2,uuu2, ddd2)∥ ≤ Ly|y1 − y2|
+ Lu∥uuu1 − uuu2∥ + Ld∥ddd1 − ddd2∥,

(2)

where ggg(·) = [g0(·), . . . , gN−2(·), gN−1(·)]⊤, 0 < Ly < ∞,
0 < Lu < ∞ and 0 < Ld < ∞ are three Lipschitz
constants, respectively.

Assumption 3. The control input satisfies the following
constraints

uk(t) = sat(vk(t)) =


u+, vk(t) > u+,

vk(t), u− ≤ vk(t) ≤ u+,

u−, vk(t) < u−,

(3)

where u+ and u− are two constants satisfying u− < u+ <
∞, and vk(t) is the unconstrained control input.

Based on the mean value theorem, it follows that

yyyi − yyyj = ΦΦΦN−1
i,j (uuui − uuuj) + ΨΨΨN−1

i,j (dddi − dddj), (4)

where yyyi = [yi(1), . . . , yi(N)]⊤, uuui = [ui(0), . . . , ui(N −
1)]⊤, dddi = [di(0), . . . , di(N − 1)]⊤,

ΦΦΦN−1
i,j =


ϕ0i,j(0) 0 · · · 0
ϕ1i,j(0) ϕ1i,j(1) · · · 0

...
...

. . .
...

ϕN−1
i,j (0) ϕN−1

i,j (1) · · · ϕN−1
i,j (N − 1)

 ,

ΨΨΨN−1
i,j =


ψ0
i,j(0) 0 · · · 0
ψ1
i,j(0) ψ1

i,j(1) · · · 0
...

...
. . .

...
ψN−1
i,j (0) ψN−1

i,j (1) · · · ψN−1
i,j (N − 1)

 ,
ϕli,j(m) = ∂g∗l /∂u

∗
ij(m) and ψl

i,j(m) = ∂g∗l /∂d
∗
ij(m),

l,m ∈ ZN−1 represent the proper partial derivatives of
gl with respect to u∗ij(m) ∈ [ui(m), uj(m)] and d∗ij(m) ∈
[di(m), dj(m)], respectively.

Letting i = k and j = k − 1 in (4) yields the following
dynamic linearization data model (DLDM) with a residual
term

yk(t+ 1) = yk−1(t+ 1) + ∆uuu⊤k (t)ϕϕϕtk,k−1(t) + ξk(t), (5)

where ξk(t) = ∆ddd⊤k (t)ψψψt
k,k−1(t) and



∆dddk(t) = [∆dk(0),∆dk(1), . . . ,∆dk(t)]⊤,

∆uuuk(t) = [∆uk(0),∆uk(1), . . . ,∆uk(t)]⊤,

ϕϕϕtk,k−1(t) = [ϕtk,k−1(0), ϕtk,k−1(1), . . . , ϕtk,k−1(t)]⊤,

ψψψt
k,k−1(t) = [ψt

k,k−1(0), ψt
k,k−1(1), . . . , ψt

k,k−1(t)]⊤.

(6)

Based on Assumption (2), we have ∥ϕϕϕtk,k−1(t)∥ ≤ Lu and

∥ψψψt
k,k−1(t)∥ ≤ Ld, which, together with the boundedness

of dk(t), leads to the boundedness of ξk(t) and satisfying
|ξk(t)| ≤ βξ < ∞, where βξ is a constant. Subsequently,
we rewrite ϕϕϕtk,k−1(t) as ϕϕϕk(t) = [ϕk(0), ϕk(1), . . . , ϕk(t)]⊤

for the notational simplicity.

3. PIO BASED HODDILC DESIGN

Motivated by the model-based proportional-integral ob-
server (PIO) in Chang (2006) to estimate the system state
and disturbance simultaneously, the following data-driven
PIO in the iteration domain is proposed based on the
established DLDM in (5) ŷk(t+ 1) = ŷk−1(t+ 1) + ∆uuu⊤k (t)ϕ̂ϕϕk(t) + ϵk−1(t) + l1ỹk−1(t+ 1),

ϵk(t) = ϵk−1(t) + l2ỹk−1(t+ 1),

ỹk(t+ 1) = yk(t+ 1)− ŷk(t+ 1),

(7)

where l1 and l2 are the observer gains to be determined,

ŷk(t), ϵk−1(t) and ϕ̂ϕϕk(t) are the respective estimates of
yk(t), ξk(t) and ϕϕϕk(t). To make the PIO in (7) imple-
mentable, the following parameter estimation algorithm

in Hou and Jin (2013) is adopted to obtain ϕ̂ϕϕk(t),

ϕ̂ϕϕk(t) = ϕ̂ϕϕk−1(t) +
ηΛk−1(t+ 1)∆uuuk−1(t)

µ+ ∥∆uuuk−1(t)∥2
, (8)

where Λk−1(t+1) = ∆yk−1(t+1)−∆uuu⊤k−1(t)ϕ̂ϕϕk−1(t), µ > 0
is a weighting factor, and η ∈ (0, 2] is the step factor.

To derive a HODDILC law, we first consider the following
objective function with high-order error information as
adopted in Chi et al. (2018a) by ignoring the constraints,

J(uk(t), α) =

(
q∑

i=1

αiek−i+1(t+ 1)

)2

+ λ(uk(t)− uk−1(t))
2, (9)

where ek(t) , yd(t) − yk(t) is the tracking error, λ > 0 is
another weighting factor and α = [α1, . . . , αq] denotes the
high-order factors satisfying

∑q
i=1 αi = 1, αi ∈ [0, 1] and

α1 + α2 −
∑q

i=3 αi , ᾱ > 0.

Reformulate (5) as

yk(t+ 1) = yk−1(t+ 1) + ∆uuu⊤k (t− 1)ϕϕϕk(t− 1)

+ ϕk(t)∆uk(t) + ξk(t).
(10)

Then applying (10) to (9) leads to

J(uk(t), α)

=

(
α1

(
ek−1(t+ 1)−∆uuu⊤k (t− 1)ϕϕϕk(t− 1)

− ϕk(t)∆uk(t)− ξk(t)

)
+

q∑
i=2

αiek−i+1(t+ 1)

)2

+ λ(uk(t)− uk−1(t))
2.

Taking derivative of J(uk(t), α) with respect to uk(t) and
letting ∂J(uk(t), α)/∂uk(t) = 0, a learning law is derived
as

uk(t) = uk−1(t)−
ρα2

1ϕk(t)(
∑t−1

i=0
ϕk(i)∆uk(i) + ξk(t))

λ+ α2
1ϕ

2
k
(t)

+

ρα1ϕk(t)

(
α1ek−1(t+ 1) +

∑q

i=2
αiek−i+1(t+ 1)

)
λ+ α2

1ϕ
2
k
(t)

(11)

where ρ > 0 is a positive scalar. Also, to make the control
law in (11) implementable, the unknown variables ϕk(t)

and ξk(t) are replaced by their estimates ϕ̂k(t) and ϵk−1(t).

To sum up, the overall PIO based HODDILC is construct-
ed as follows by considering the input constraints

ŷk(t+ 1) = ŷk−1(t+ 1) + ∆uuu⊤k (t)ϕ̂ϕϕk(t) + ϵk−1(t) + l1ỹk−1(t+ 1),

ϵk(t) = ϵk−1(t) + l2ỹk−1(t+ 1),

ỹk(t+ 1) = yk(t+ 1)− ŷk(t+ 1),

ϕ̂ϕϕk(t) = ϕ̂ϕϕk−1(t) +
ηΛk−1(t+ 1)∆uuuk−1(t)

µ+ ∥∆uuuk−1(t)∥2
,

ϕ̂ϕϕk(t) = ϕ̂ϕϕ0(t), if sign(ϕ̂ϕϕk(t)) ̸= sign(ϕ̂ϕϕ0(t)) or ∥ϕ̂ϕϕk(t)∥ ≤ ε,

vk(t) = vk−1(t)−
ρα2

1ϕ̂k(t)(
∑t−1

i=0
ϕ̂k(i)∆vk(i) + ϵk−1(t))

λ+ α2
1ϕ̂

2
k
(t)

+

ρα1ϕ̂k(t)

(
α1ek−1(t+ 1) +

∑q

i=2
αiek−i+1(t+ 1)

)
λ+ α2

1ϕ̂
2
k
(t)

,

uk(t) = sat(vk(t)),
(12)

where ε > 0 is sufficiently small, and ϕ̂ϕϕ0(t) is the initial

value of ϕ̂ϕϕk(t).

4. CONVERGENCE ANALYSIS

Before proceeding with the convergence analysis, the fol-
lowing technical lemmas are given.

Lemma 4. (Jury (1964)) Let

A =


a1 a2 · · · an
1 0 · · · 0

. . .
. . .

...
1 0

 .
If
∑n

i=1 |ai| < 1, then s(A) < 1, where s(A) is the spectral
radius of A.

Lemma 5. (Huang (1984)) A ∈ Rn×n, and s(A) is the
spectral radius of A. Then, for any δ > 0, there always
exists a proper matrix norm ∥ · ∥, such that

∥A∥ < s(A) + δ.

The following theorem gives the convergence analysis of
the proposed PIO based HODDILC method.

Theorem 6. Consider the nonlinear system in (1) under
Assumptions 1-3, where the PIO based HODDILC is
applied. If the observer gains l1 and l2 are chosen to satisfy
max{|2−l1+

√
l21 − 4l2|/2, |2−l1−

√
l21 − 4l2|/2} < 1, and

the parameters λ and ρ are chosen such that

λ > ρ2L2
u/4, (13)

it is guaranteed that (i) the estimation ϕ̂ϕϕk(t) is bounded for
all t and k; (ii) the bounded convergence of observation er-
ror is achieved along the batch direction; (iii) the bounded
convergence of tracking error ek(t) is also achieved along
the batch direction.

Proof. Subtracting ϕϕϕk(t) from both sides of (8) and

denoting ϕ̃ϕϕk(t) , ϕϕϕk(t) − ϕ̂ϕϕk(t) lead to



ϕ̃ϕϕk(t) = ϕϕϕk(t)− ϕ̂ϕϕk(t)

= ϕϕϕk(t)− ϕ̂ϕϕk−1(t)−
ηΛk−1(t)∆uuuk−1(t)

µ+ ∥∆uuuk−1(t)∥2

= ϕϕϕk(t)−ϕϕϕk−1(t) + ϕ̃ϕϕk−1(t)

−
η(∆uuu⊤k−1(t)ϕ̃ϕϕk−1(t) + ξk−1(t))∆uuuk−1(t)

µ+ ∥∆uuuk−1(t)∥2

=

(
I −

η∆uuuk−1(t)∆uuu
⊤
k−1(t)

µ+ ∥∆uuuk−1(t)∥2

)
ϕ̃ϕϕk−1(t)

+ϕϕϕk(t)− ϕϕϕk−1(t)−
ηξk−1(t)∆uuuk−1(t)

µ+ ∥∆uuuk−1(t)∥2
,

(14)

where we have used the fact ∆uuu⊤k−1ϕ̃ϕϕk−1(t)∆uuuk−1(t) =

∆uuuk−1(t)∆uuu⊤k−1ϕ̃ϕϕk−1(t). Due to |ξk−1(t)| ≤ βξ for all t
and k, it follows that∥∥∥∥ηξk−1(t)∆uuuk−1(t)

µ+ ∥∆uuuk−1(t)∥2

∥∥∥∥ ≤ η|ξk−1(t)|∥∆uuuk−1(t)∥
2
√
µ∥∆uuuk−1(t)∥

≤ ηβξ
2
√
µ
.

Taking the norm on both sides of (14) and considering
∥ϕϕϕk(t)∥ ≤ Lu for all t and k give

∥ϕ̃ϕϕk(t)∥ ≤

∥∥∥∥∥I − η∆uuuk−1(t)∆uuu⊤k−1(t)

µ+ ∥∆uuuk−1(t)∥2

∥∥∥∥∥ ∥ϕ̃ϕϕk−1(t)∥ + β1,

where β1 , 2Lu +
ηβξ

2
√
µ . Since η ∈ (0, 2] and µ > 0, then

there exists a scalar ρ1 ∈ (0, 1) such that∥∥∥∥∥I − η∆uuuk−1(t)∆uuu⊤k−1(t)

µ+ ∥∆uuuk−1(t)∥2

∥∥∥∥∥ ≤ ρ1 < 1,

which implies that

∥ϕ̃ϕϕk(t)∥ ≤ ρ1∥ϕ̃ϕϕk−1(t)∥ + β1 ≤ ρk1∥ϕ̃ϕϕ0(t)∥ +
β1

1 − ρ1
.

Due to the boundedness of initial estimation error ϕ̃ϕϕ0(t)

for any t, it is concluded that ϕ̃ϕϕk(t) is bounded, which,
together with the boundedness of ϕϕϕk(t), indicates that

ϕ̂ϕϕk(t) is bounded for any t and k, and satisfies |ϕ̂ϕϕk(t)| ≤ βϕ̂ϕϕ.

Thus, the condition (i) holds.

By defining ξ̃k(t) , ξk(t) − ϵk(t), then it follows from (5)
and (7) that

χk(t+ 1) = (Ā− LC̄)χk−1(t+ 1) + κk(t), (15)

where χk(t+ 1) = [ỹk(t+ 1), ξ̃k(t)]⊤, L = [l1, l2]⊤ and

Ā =

[
1 1
0 1

]
, C̄ =

[
1
0

]⊤
, κk(t) =

[
∆uuu⊤k (t)ϕ̃ϕϕk(t) + ∆ξk(t)

∆ξk(t)

]
.

It is easy to verify that κk(t) is bounded for any t and

k owing to the boundedness of ξk(t), ϕ̃ϕϕk(t) and uuuk(t). By
properly choosing the observer gains l1 and l2 satisfying
max{|2 − l1 +

√
l21 − 4l2|/2, |2 − l1 −

√
l21 − 4l2|/2} < 1,

then Ā−LC̄ is Schur stable, indicating that the bounded
convergence of χk(t) is achieved along the batch direction.
The condition (ii) is satisfied. Note also that ϵk(t) is
bounded and satisfies |ϵk(t)| ≤ βϵ for any t and k based
on the boundedness of ξk(t).

Based on Assumption 3 and the proof of Theorem 2 in Chi
et al. (2020), there exists a diagonal matrix θθθk(t) such that

∆uuuk(t) = θθθk(t)∆vvvk(t),

where θθθk(t) = diag{θk(0), θk(1), . . . , θk(t)}, ∆vvvk(t) =
[∆vk(0),∆vk(1), . . . ,∆vk(t)]⊤ and

θk(i) =


[0, 1), vk(i) > u+,

1, u− ≤ vk(i) ≤ u+,

[0, 1), vk(i) < u−,

i ∈ Zt.

It follows from (5) and the definition of ek(t) that

ek(t+ 1) = [1− ζ1,k(t)]ek−1(t+ 1) + τ1,k(t)

−
ρα1ϕ̂k(t)ϕk(t)θk(t)

λ+ α2
1ϕ̂

2
k
(t)

q∑
i=3

αiek−i+1(t+ 1),
(16)

where ζ1,k(t)=ρα1(α1+α2)ϕ̂k(t)ϕk(t)θk(t)/[λ+α2
1ϕ̂

2
k(t)],

τ1,k(t) =
ρα2

1ϕk(t)θk(t)

λ+ α2
1ϕ̂

2
k
(t)

[
t−1∑
i=0

ϕ̂k(i)∆vk(i) + ϵk−1(t)

]

−
t−1∑
i=0

ϕk(i)∆uk(i)− ξk(t).

Based on (16), we have

eeek(t+ 1) = Ak(t)eeek−1(t+ 1) + τ̃1,k(t), (17)

where eeek(t+ 1) = [ek(t+ 1), . . . , ek−q+2(t+ 1)]⊤, τ̃1,k(t) =

[τ1,k(t), 0, . . . , 0]⊤, ζi,k(t) = −ρα1αi+1ϕ̂k(t)ϕk(t)θk(t)/[λ+

α2
1ϕ̂

2
k(t)], i = 2, 3, . . . , q − 1 and

Ak(t) =


1 − ζ1,k(t) ζ2,k(t) · · · ζq−2,k(t) ζq−1,k(t)

1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .
Note that

|1 − ζk,1(t)| +

q−1∑
i=2

|ζk,i(t)|

= 1 −
ρα1(α1 + α2 −

∑q
i=3 αi)ϕk(t)ϕ̂k(t)θk(t)

λ+ α2
1ϕ̂

2
k(t)

.

In terms of α1 + α2 −
∑q

i=3 αi , ᾱ > 0 and the condition
(13), it is easy to derive

0 < M1 ≤
ρα1(α1 + α2 −

∑q
i=3 αi)ϕk(t)ϕ̂k(t)θk(t)

λ+ α2
1ϕ̂

2
k(t)

≤ ρα1ᾱ|ϕk(t)||ϕ̂k(t)|
2
√
λα1|ϕ̂k(t)|

≤ ρLu

2
√
λ
< 1.

Therefore, we have

|1 − ζk,1(t)| +

q−1∑
i=2

|ζk,i(t)| < 1 −M1 < 1,

which, by Lemma 4, implies that s(Ak(t)) < 1 for any t
and k. Then by Lemma 5, there exists a sufficiently small
constant δ such that ∥Ak(t)∥ ≤ s(Ak(t)) + δ < ρ2 < 1.

Besides, we rewrite the unconstrained input vk(t) as

vk(t) = vk−1(t)−
ρα2

1ϕ̂k(t)

λ+ α2
1ϕ̂

2
k
(t)

[
t−1∑
i=0

ϕ̂k(i)∆vk(i) + ϵk−1(t)

]

+
ρα1ϕ̂k(t)

λ+ α2
1ϕ̂

2
k
(t)

q∑
i=3

α1ek−i+1(t+ 1)

+
ρα1(α1 + α2)ϕ̂k(t)

λ+ α2
1ϕ̂

2
k
(t)

[yd(t+ 1)− yk−1(t+ 1)]

(18)

According to (4), it follows that



yk−1(t+ 1) = y0(t+ 1) +
t∑

i=0

ϕtk−1,0(i)[uk−1(i) − u0(i)]

+
t∑

i=0

ψt
k−1,0(i)[dk−1(i) − d0(i)]

Applying the above equality to (18) gives

vk(t) = [1 − ϑk(t)]vk−1(t) + τ2,k(t), (19)

where
ϑk(t) = ρα1(α1 + α2)ϕ̂k(t)ϕ

t
k−1,0(t)θk−1(t)/[λ+ α2

1ϕ̂
2
k(t)],

τ2,k(t) = −
ρα2

1ϕ̂k(t)

λ+ α2
1ϕ̂

2
k
(t)

[
t−1∑
i=0

ϕ̂k(i)∆vk(i) + ϵk−1(t)

]

+
ρα1ϕ̂k(t)

λ+ α2
1ϕ̂

2
k
(t)

[
q∑

i=3

αiek−i+1(t+ 1) + (α1+α2)e0(t+ 1)

]

+
ρα1(α1 + α2)ϕ̂k(t)

λ+ α2
1ϕ̂

2
k
(t)

{
−

t−1∑
i=0

ϕtk−1,0(i)θk−1(i)vk−1(i)+

t∑
i=0

ϕtk−1,0(i)θ0(i)v0(i)−
t∑

i=0

ψt
k−1,0(i)[dk−1(i)− d0(i)]

}
It follows from (13) that

0 < M2 ≤
ρα1(α1 + α2)ϕ̂k(t)ϕtk−1,0(t)θk−1(t)

λ+ α2
1ϕ̂

2
k(t)

≤
ρα1(α1 + α2)|ϕtk−1,0(t)||ϕ̂k(t)|

2
√
λα1|ϕ̂k(t)|

≤ ρLu

2
√
λ
< 1,

which indicates that |1−ϑk(t)| < 1−M2 < ρ3 < 1 for any
t and k.

Next, the bounded convergence of tracking error ek(t) will
be proved based on the double-dynamic analysis in Meng
and Moore (2017). Step (I) Let t = 0. It follows that

τ1,k(0) =
ρα2

1ϕk(0)θk(0)

λ+ α2
1ϕ̂

2
k(t)

ϵk−1(0) − ξk(0), (20)

which is bounded due to the boundedness of ϕk(0), θk(0),

ϕ̂k(0), ϵk−1(0) and ξk(0). Therefore τ̃1,k(0) is also bounded
and satisfies |τ̃1,k(0)| ≤ βτ̃1,k(0) <∞. From (17), we have

∥eeek(1)∥ ≤ ∥Ak(t)∥∥eeek−1(1)∥ + βτ̃1,k(0)

≤ ρk2∥eee0(1)∥ + βτ̃1,k(0)/(1 − ρ2).
(21)

Due to the boundedness of eee0(1), the bounded convergence
of eeek(1) is satisfied, immediately indicating that ek(1) is
boundedly convergent for any k and satisfies supk |ek(1)| ≤
βe(0) <∞. Then, it follows from (19) that

τ2,k(0) = −
ρα2

1ϕ̂k(0)

λ+ α2
1ϕ̂

2
k
(0)

ϵk−1(0)

+
ρα1ϕ̂k(0)

λ+ α2
1ϕ̂

2
k
(0)

[
q∑

i=3

αiek−i+1(1) + (α1 + α2)e0(1)

]
+
ρα1(α1 + α2)ϕ̂k(0)

λ+ α2
1ϕ̂

2
k
(0)

{
ϕ0k−1,0(0)θ0(0)v0(0)

−ψ0
k−1,0(0)[dk−1(0)− d0(0)]

}
(22)

It is easy to verify that τ2,k(0) is also bounded and assumed
to satisfy |τ2,k(0)| ≤ βτ2,k(0). From (19), we have

|vk(0)| ≤ |1 − ϑk(0)||vk−1(0)| + |τ2,k(0)|
≤ ρk3∥v0(0)∥ + βτ̃2,k(0)/(1 − ρ3).

(23)

which implies that vk(0) is boundedly convergent for all k
and satisfies |vk(0)| ≤ βv(0).

Step (II) Suppose that for any t = 0, 1, . . . , T − 1, T ∈
ZN−1, both ek(t+ 1) and vk(t) are boundedly convergent
and satisfy |ek(t+1)| ≤ βe(t) <∞ and |vk(t)| ≤ βv(t) <∞
for any k.

For t = T , one can easily check that

|τ1,k(T )| ≤ ρLu(2Tβϕ̂ϕϕβv,max + βε)/λ+ 2TLuumax + βξ (24)

with βv,max = maxt∈ZT−1{βv(t)}, umax = max{|u+|, |u−|}.
This implies that τ̃1,k(T ) is also bounded and satisfies
τ̃1,k(T ) ≤ βτ̃1,k(T ). Following the same way as that in the
case of t = 0, eeek(T + 1) is boundedly convergent, therefore
ek(T+1) is bounded and satisfies |ek(T+1)| ≤ βe(T ) <∞.
Then, we have

|τ2,k(T )| ≤
ρ

2
√
λ

[
(2β

ϕ̂ϕϕ
+ Lu)Tβv,max + βϵ + βe(T )

+ 2(T + 1)Ldβd

]
<∞.

(25)

Therefore, the bounded convergence of vk(T ) can be en-
sured from (19). By mathematical induction, it is conclud-
ed that the bounded convergence of tracking error ek(t)
and vk(t) are achieved. Then, the condition (iii) holds.
The proof is complete. �

0 20 40 60 80 100

-0.5

0

0.5

O
ut

pu
t

yd(t) y5(t)

0 20 40 60 80 100

Time

-0.5

0

0.5

O
ut

pu
t

yd(t) y50(t)

Fig. 1. Output tracking performance

0 20 40 60 80 100
-1

0

1

In
pu

t s
ig

na
l

Iteration number = 5

uk(t) vk(t)

0 20 40 60 80 100

Time

-1

0

1

In
pu

t s
ig

na
l

Iteration number = 50

uk(t) vk(t)

Fig. 2. Control signal with and without constraints



0 20 40 60 80 100

Iteration number

0

0.1

0.2

0.3

0.4

A
T

E

Proposed
Chi et al. [IJSS, 2020]
HODDILC without PIO

60 65 70

0.06

0.065

Fig. 3. ATE performance index

5. AN ILLUSTRATIVE EXAMPLE

Consider a nonlinear systems studied in Chi et al. (2020)

yk(t+1) =


yk(t)

1 + y2
k
(t)

+ u3k(t) + dk(t), t ∈ [0, 50],

yk(t)yk(t− 1)yk(t− 2)(yk(t− 2)− 1) + α(t)uk(t)

1 + y2
k
(t− 1) + y2

k
(t− 2)

+dk(t), t ∈ (50, 100],

where α(t) = 1+round(t/50), t ∈ {0, 1, . . . , 99}. The input
constraints are given as u+ = 0.85, u− = −0.85. The
external disturbance is assumed as dk(t) = 0.1sin(t+0.2k)
which is obviously nonrepetitive. The desired reference is
taken as

yd(t+ 1) =

0.5× (−1)round(t/10), t ∈ [0, 30],

0.5sin(tπ/10) + 0.3cos(tπ/10), t ∈ (30, 70],

0.3sin(tπ/15)× (−1)round(t/10), t ∈ (70, 100].

For the simulation purpose, the initial parameters are

chosen as u0(t) = 0, ϵ0(t) = 0, ϕ̂0(t) = 0.2 for t ∈
{0, 1, . . . , 99}, ε = 0.001, η = 1, λ = 0.7, µ = 1, ρ = 0.8,
l1 = 0.9 and l2 = 0.05. The tracking results and control
signal are shown in Figs.1 and 2, while the averaged track-

ing error defined by ATE(k) =
∑N

t=1 |ek(t)|/N is plotted
in Fig.3. It is seen that the tracking performance is grad-
ually improved as the iteration number increases. Also,
the proposed method outperforms the HODDILC without
PIO and the newly proposed observer-based DDILC in Chi
et al. (2020). Note that the control signal by the proposed
method obviously satisfies the input constraints.

6. CONCLUSION

In this paper, a novel PIO based HODDILC method
has been proposed for nonlinear batch processes with
nonrepetitive disturbances subject to input constraints.
Compared with the recently developed observer-based D-
DILC method Chi et al. (2020), high-order tracking error
information and control inputs in the previous time in-
stants in the current batch are incorporated into ILC law
design, such that the tracking performance could be fur-
ther improved. Differing from most of the existing DDILC
methods (Hou and Jin (2013); Chi et al. (2018a,b)) where
all the uncertainties are lumped into the pseudo partial
derivative or pseudo gradient to facilitate algorithm design
and convergence analysis, the proposed method estimates
the gradient itself and the uncertainty term by parameter
estimation algorithm and PIO, respectively. Based on the
contraction mapping principle, rigorous analysis has been
carried out to clarify the convergence of tracking error.
An illustrative example has well demonstrated the effec-
tiveness and advantage of the proposed design.
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