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Abstract: This paper proposes a model-free extremum seeking control (ESC) approach to optimize the
productivity of continuous cultures of microalgae, considering the dilution rate and the light intensity as
manipulated variables, and the biomass concentration as single measurement. The resulting two-input
single-output optimization problem is first solved using a recursive least-squares strategy based on the
representation of the process by a Hammerstein block-oriented model. In order to face the presence
of noise on the regressor variables (input and output signals), the problem is then reformulated as
a maximum-likelihood estimation problem, which is solved on a moving horizon. Simulation results

demonstrate the method performance.
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1. INTRODUCTION

Microalgae cultures in photobioreactors (PBRs) have received
a vivid interest because of their numerous applications to the
production of nutrients, pharmaceuticals, pigments, cosmetics
and third-generation biofuels, as well as for the fixation of CO;
or wastewater treatment. Process control and optimization often
requires a process model. However, cultures of microalgae in
PBRs have all the inherent difficulties of biological systems,
i.e., their modeling is a difficult task resulting in structural and
parametric uncertainties, and on-line measurements are limited.
In this context, real-time optimization (RTO) appears as a well-
suited framework, based on a minimal set of on-line measure-
ments defining an objective function which can incorporate
economical, safety or quality constraints (Darby et al., 2011).
Furthermore, the consideration of possible model/plant mis-
match can also be achieved either by considering robust and/or
adaptive RTO techniques such as run-to-run methods (Srini-
vasan and Bonvin, 2002), or modifier-adaptation (Marchetti
et al., 2009; Gao et al., 2016; Ahmad et al., 2019) which modi-
fies the model-based objective function and constraint gradients
to match with the true plant. Extremum seeking control (ESC)
(Ariyur and Krstic, 2003), a direct input adaptation method
transforming the RTO problem into a feedback control prob-
lem, presents the second advantage of driving the system to the
extremum of the objective function, under a few assumptions on
the problem convexity, without the need for a process model.
We refer the reader to the following review papers for more
details on ESC and its application to bioprocesses (Dewasme
and Vande Wouwer, 2020; Tan et al., 2010).

Perturbation-based ESC is however particularly affected by the
time-scale separation between the process dynamics, the per-
turbation frequency and the estimation/adaptation rate. When

applied to a bioprocess with large time constants such as mi-
croalgae cultures, ESC converges extremely slowly, which con-
stitutes a serious drawback. This was demonstrated in Dewasme
et al. (2017) where ESC is applied to two specific microalgae
strains using the classical estimation scheme based on the com-
bination of a high-pass and low-pass filters. In order to over-
come the time-scale separation, other estimation schemes have
been proposed, for instance recursive least squares (Dewasme
et al., 2009, 2011), which avoids using filters and the selection
of cut-off frequencies. In Feudjio Letchindjio et al. (2019),
recursive least squares estimation is combined with a Ham-
merstein representation of the process, where the static map
is a quadratic function approximating the cost function. This
method allows a significant acceleration of the convergence of
the ESC. These results are validated experimentally in Feudjio
Letchindjio et al. (2020).

In all these previous studies, irradiance is considered either as a
fixed operating condition which is not optimized, or a possible
step-wise varying disturbance. As stated in Bernard (2011),
microalgal cells are photo-acclimating at a specific light inten-
sity and their growth is varying as a convex Haldane function,
describing activation and inhibition respectively at low and high
light intensities, and therefore presenting an extremum. It is
thus legitimate to manipulate the light intensity in laboratory
PBRs in order to optimize the microalgae productivity. This
work addresses the two-input-single-output optimization prob-
lem using a Hammerstein representation of the bioprocess and a
parameter estimation approach to compute on-line the gradient
of the cost function. In a first step, the estimation problem is
formulated as a recursive least squares problem. However, the
presence of measurement noise affects the regressor and leads
to biased results. In a second step, the problem is therefore



solved using a maximum likelihood estimator on a moving
horizon.

This paper is organized as follows. Section 2 describes the
proposed multivariable extremum seeking strategy based on
RLS or MLE. Section 3 presents the dynamic model of the
microalgae cultures and the results of the application of the
control strategy are discussed in section 4. Concluding remarks
end this paper in section 5.

2. MULTIVARIABLE ESC

We consider an input-affine nonlinear dynamic system such as:

= f(x)+ug(x) (1a)
y=Cx (1b)
J = h(y(x),u) (Ic)

where x € R" is the state variable vector, u € R" the input
vector, y € R™ the measured output vector, C the m X n mea-
surement matrix representing the dynamics of the sensor, J the
cost function to be maximized, and where the following neces-
sary conditions of optimality (NCO), are fulfilled, considering
nonlinear functions f : R"” — R" and h: R — R.

Assumption 1. There exists a unique optimal input vector u*
such that Vuh(y(Xss), Uss)xymx* ug—ur = 0 where xg5 and ug
are steady-state values, that is f(Xss) + Ussg(xss) = 0, in a set
U= {Lt = uss|umin <ugy < umax}~

Assumption 2. The steady-state objective  function
Jss = h(y(xss),uss) is such that VZh(y(xy),uss) is negative-
definite at u*.

The first assumption relates to the existence of a unique couple
of minimizers x* and u#* under achievable steady-state condi-
tions, that is, only for the input set U, while the second assump-
tion states that the steady-state objective function is convex with
a unique maximum. It must be noticed that, in the following,
Jss = h(y(xs), uss) is also assumed to be continuously differen-
tiable.

In the following case study, a multi input single output system
(MISO) is considered and the next assumption as well as
upcoming developments therefore address the specific MISO
case.

Assumption 3. The nonlinear system (1) can be approximated
by a Hammerstein structure shown in Figure 1, separating the
static relation x(u) from the dynamics y(x(u)).
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Fig. 1. Hammerstein representation of nonlinear system (1)

A first order static map is considered and reads:
x=b+mj uy+my up 2)

The first-order dynamics are represented as:

1

Gls) = 14+71s

3)

where T is the time constant and s stands for the Laplace
variable. Since these dynamics are usually created by the use
of a sensor, delivering discrete measurements at a specific
sampling rate, it is legitimate to consider an equivalent discrete
representation using the matched pole-zero method:

G(z) = “

Is

where o = e~ ©, T being the sampling period and K} = 1 — a.

The input-output map can therefore be written:

&) =Kib+Kimui(t—1)+Kimyu(t—1)+oy(t—1)

&)
and the gradient of J reads:
dy 9y
Vuh ) = EYREL
(v,u) <Y+M1 oy uj auz)
n dy ox  dy ox
Y 1ox 0y Ox duy
L dy
= Uy =—— mip,uy =— m
yuy 5 MU S
(6)
where an estimation of g—i is proposed as:
dy
2 - )

ox  myuy +mous+b

In (Feudjio Letchindjio et al., 2018), the authors developed a
recursive least-squares extremum seeking (RLS-ES) based on
a Hammerstein representation of a single-input single-output
system where the dilution rate is manipulated. The current study
considers the extension of the method to the multivariable case,
manipulating both the dilution rate and light irradiance. A RLS
estimator with forgetting factor (Landau and Dugard, 1986) is
first considered in the ESC loop in Figure 2:

e(t) =y(t)—d(r—1)T0(t—1) (8a)
1 _ _ T p(—
0= [r-1 - By
0(r)=0(r—1)+P()o(r — 1)e(r) (8¢)
with
O(r—DT =1yt —1) uy(t—1) us(t —1)] (9a)
07 = [Kib o Kymy Kym;] (9b)

where e is the estimated output error, P is the covariance matrix
of the estimation error and A is the forgetting factor. The dither
signal is designed as d = [d},da], d| = Aysin(01t) + Apsin(mat)
and dy = Assin(wst) + Agsin(oat). Estimates of the parameters
can therefore be obtained as follows:
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Fig. 2. Extremum seeking with a recursive estimator (RE).

0=0, (10a)
Ki=1-6, (10b)
.9

b= 1_192 (10c)
My = 13392 (10d)
1y = 1?“92 (10e)

In order to avoid numerical issues due to the possible denom-
inator cancellation of several elements of (10), an orthogonal
projection, as suggested in Guay and Burns (2017), is used to
force the parameters to remain in an uncertainty ball defined
by the norm ||6]| < L. For more information, the reader may
refer to Goodwin and Sin (1984). The inputs are assumed to
belong to a set U defined by lower u,,;, and upper i, values
delimiting the optimum stable steady-state region of J = h(y,u).
However, since the current ES strategy is assumed to be model-
free, the only way to force the calculated inputs to remain in
U is (i) to apply a sufficiently high dither signal magnitude as
suggested in Tan et al. (2009) and Bastin et al. (2009) and (ii) to
include gradient estimation saturations ensuring that the dither
signal is always able to keep the estimator, in average, in the
stable region of the steady-state map optimum, such that:

Vonin < Vih < Vi (11)

A practical design of V,,;,, and V,,,, is discussed further in the
result sections.

Another difficulty stems from stochastic perturbations, which
will corrupt the measurement signal y(¢) but also the regressor
which uses past values of the measurements and the inputs. In
this situation, where the regressor is not perfectly known, the
parameter estimates provided by RLS are biased and in turn,
the gradient estimation. It is therefore necessary to resort to
maximum likelihood estimation (MLE), taking account of the
presence of noise on the regressor. For linear models, a MLE
algorithm has been proposed in a completely different context
in (Bogaerts et al., 2003). The cost function to minimize can be
formulated as:

L — 1 % ez#) (12a)
MLE =5 4 52(1) + 072(1)0 e
e(t) =y(t)—®(t—1)T0(t—1) (12b)

where X is the covariance matrix of the perturbations acting on
the regressor variables and & is the variance of the measurement

noise. This cost function is based on a set of M measurements
and has to be minimized using a nonlinear programming solver.
This is not an issue in the present context as the sampling
process leaves plenty of time for the optimization. In practice,
it is suggested to proceed with the optimization of (12a) over
a moving horizon of M measurements at each sampling time
T;. To monitor the evolution of the numerical optimization,
an approximation of the covariance matrix of the parameter
estimation error is given by (Bogaerts et al., 2003):

pe (B w00 T
N\ & 62 (0) 1 6L ()b ‘
£ (1) = x(t) + 2(0)0p A (1) (13b)
() = ——— (13¢)

where £y, Ay and 6y are respectively the state, Lagrange mul-
tiplier and parameter estimate vectors of the MLE optimization
over a horizon M.

3. PROCESS ANALYSIS
3.1 Dynamic model

We consider the 4-state dynamic model proposed in (Bernard,
2011) and identified for the microalgae Scenedesmus obliquus
in (Deschénes and Vande Wouwer, 2016), accounting for
photo-inhibition and photo-acclimation:

X =uX —DX —RX
S=—pX+D(Si—S)
0=p—uQ

I =du(I—1)

(14)

where X, S and Q are respectively the biomass, substrate
(nitrate) and internal quota (representing the nutriment storage
inside the cell). I* is a conceptual variable representing the
light at which the cells are photo-acclimated. §;, is the inlet
substrate concentration. D, the dilution rate and /, the incident
light intensity, are considered as the two process inputs.

The complex kinetics are defined by:
kp
I') = Ypar ———
) = Ynar
Chl =y(I")XQ = 6X
A= (aChl+bX +c)L
F—7 Kan
Katt + }\'

s5)

I
T+ % 4+ peris)

‘E' = Mmax



Table 1. Parameter values of model (14-15)
for Scenedesmus obliquus (Deschénes and Vande
Wouwer, 2016)

Parameters Values
Hmax 147477
Pmax 0.7 gN gcil a-!
Ymax 1.1 gChl gN_]

kp 1970 yEm 257!
a 17348 m? gChl~!
b 327m™!

c 0.14

Kt 122 yEm~2 57!

Ky 022 uEm~2 57!

Ki 700 yEm~2 57!

Qo 0.011 gN gC~!

0 0.099 gN gC~!

Ks 0.09 gN m~3
I 60 uEm~2s7!
5 1.8
R 0.028d"!

L 02m™!

Sin 0.12 gNm~3

where Chl is the chlorophyll concentration and all the remain-
ing parameter values are presented in Table 1.

Biomass productivity is the optimization objective function to
be maximized and defined as J = D X.

3.2 Steady-state map

A bifurcation analysis of a similar model was achieved in
(Dewasme et al., 2017) for a constant light intensity level (i.e.,
the SISO case where [ is fixed). This analysis is now extended
to the TISO case. Referring to Figure 3, the steady-state map
is a smooth and convex function of the dilution rate D and the
light intensity /, which has a maximum, fulfilling assumptions
1 and 2.
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Fig. 3. Steady-state map showing the biomass productivity J as
a function the inputs D and I. The red star indicates the
optimum.

The optimum is located in J = 0.274 ¢ L~' d~! and the input
maximizers are u* = [0.676 d=' 732.491 umol m=2 s‘l]. The
following observations can be made:

e There exist two kinds of equilibria: the wash-out steady-
state (where X;; = 0 and Sy = Sj;) and a complex mani-
fold, function of the steady-state input values, containing
the optimum. In the following, we denote the correspond-
ing regions respectively as wash-out and optimum stable
steady-state regions;

e A numerical stability analysis can be achieved and leads
to the results of Figure 4, where the eigenvalues of the

Jacobian of f(x), Jac = g—f are represented by contour
diagrams, functions of the steady-state input values.

e While the optimum is contained in the left stable region,
it may be observed that system operation beyond D =
1dt, independently of /, can however lead to the wash-
out region of attraction. Indeed, the first two eigenvalue
diagrams, related to X and S, clearly shows a boundary
(in red) separating both stable regions. This statement is
supported by Figure 5 where the contours of the objective
function J are indeed dropping to O (shown as < 0.02”)
beyond the unstable boundary.
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Fig. 4. Contours of the evolution of the eigenvalues of the
Jacobian of f(x): A; to A4 are respectively related to X,
S, Q and I*. The red zones represent the positive contours
(unstable regions), separating the A; and A, diagrams in

two stable regions.
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Fig. 5. Contours of the evolution of the objective J as a function
of the inputs D and /.

4. MICROALGAE PRODUCTIVITY OPTIMIZATION

ESC with the RLS estimator is first applied in a noise-free ideal
case with the parameters defined in Table 2.

Figures 6 and 7 show the performance of the strategy in 5
different simulation runs started with random input initial con-
ditions (i.e., random initializations on the steady-state map).
The algorithm converges within 10 days to the neighborhood of
the objective function (J) maximum, which is a remarkable per-
formance considering SISO results (Feudjio Letchindjio et al.,
2018, 2019) converging within 10 to 20 days. The light intensity



Table 2. Discrete RLS-ES control strategy - param-
eter design

Parameters Values

kr [0.158-107]

A 0.95

L 10

Aq 0.1

Ay 0.05

] 2

(0V)) 1

Az 50

Ay 25

03 3.5

Wy 2.5
Vnin [—0.25 —0.005]
Vinax [0.1 0.005]

may however require more time to reach the optimum due to
the flatness (i.e., small gradient) of the map, reflected in the
corresponding components of V,,;, and V... The latter are
also designed such that the upper gradient limit related to D
is set to an absolute smaller value (0.1) than the corresponding
lower limit (—0.25) in order to ensure that the estimator remains
in the optimum stable steady-state region. In this connection,
the magnitudes of the dither signal components are taken suffi-
ciently large, as recommended in Bastin et al. (2009), but also
sufficiently small to not alter the convergence accuracy (see
Chioua et al. (2007) for more details about the convergence of
ESC algorithms in the particular case of Hammerstein systems).
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Fig. 6. RLS-ESC application: evolutions of the inputs and
output. Optimal values are shown by the dashed lines.

A numerical validation of the proposed MLE Extremum Seek-
ing (ML — ES) method is shown in Figures 8 and 9 for a
relative standard deviation of the noise of 5 % acting on both
the input and output signals (we consider in this way that
the manipulation of the light or dilution rate could be subject
to perturbations), a sampling time of 0.1 day and a moving-
horizon of 5 samples (half a day).

Except for the dither magnitudes, which are halved, the other
parameters selected in Table 2 are kept identical. The method
very satisfactorily converges despite the effect of the noise. In
a remarkable way, the amplitude of the dither signals could be
decreased in such a way that the algorithm would be able to
converge only thanks to the persistence of excitation provided
by the natural perturbations (not shown in this paper). The
evolution of the gradient components, shown in Figure 10,
confirm that a close neighborhood of the optimum is attained
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Fig. 7. RLS-ESC application: evolutions of the biomass, sub-
strate and internal quota concentrations.
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Fig. 8. ML-ESC application with noise corrupting the in-
put/output signals: time evolution of the inputs and output.
Optimal values are shown by the dashed lines.
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Fig. 9. ML-ESC application with noise corrupting the in-
put/output signals: time evolution of the biomass, substrate
and internal quota.

and maintained despite the absence of gradient bounds in the
algorithm implementation.

5. CONCLUSION

This study investigates the use of the light irradiance as a sec-
ond manipulated variable in the real-time optimization of con-
tinuous cultures of microalgae. A simple recursive least squares
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Fig. 10. ML-ES application with noise corrupting the in-
put/output signals: evolution of the gradient components.

estimator based on a Hammerstein model allows developing an
efficient extremum seeking algorithm, which however suffers
from the effect of noise on the regressor variables. A maximum-
likelihood receding horizon estimator is therefore used instead,
which gives excellent convergence properties. Obviously, the
dilution rate triggers faster dynamics than the light irradiance,
which leads to photo-acclimation or photo-inhibition depend-
ing on the light intensity. Also, the relatively flat steady-state
map with respect to light explains the slower convergence of the
ESC scheme. Future research prospects include the considera-
tion of a recursive version of the maximum likelihood estimator
and experimental validation of the multivariable ESC with a
laboratory-scale microalgae PBR.
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