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Abstract: For distributed control systems with intermittent sensor faults, a distributed fault
and state combined observer is designed, and an observer switching mode strategy is proposed
to improve the observer convergence performance, then a distributed fault-tolerant model
predictive is designed based on the observer. In the proposed observer, the distributed system
observer matrices, and state and fault estimation are computed in a totally distributed way with
some transition matrices, which can consider the coupled states. The switching mode observer
can be more targeted. The two modes: state only estimation, both state and fault estimation
are switched due to the absence or presence of the sensor faults. The approach is shown effective
through a simulated example.
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1. INTRODUCTION

Distributed control can be applied to deal with large-
scale systems and geographically separate systems with
communications (Christofides, 2001; Xu and Bao, 2009).
Distributed control can reduce the computation burden
and simplify the modeling work using distributed process
structures and models.

Modern chemical processes often work with larger scales
and flexible production requirements. Many chemical pro-
cesses contain several units coupled through some physical
connections, such as mass flow and recycles. Centralized
controllers may be very complex and with high compu-
tation burden. Distributed controllers are widely used in
such processes to reduce the control complexity and com-
putation burden, especially the distributed model predic-
tive control (DMPC). DMPC can deal with the process
constraints when design the control law by solving an
online optimization (Mayne et al., 2000; Christofides et al.,
2013). A lot of work about DMPC in chemical processes
has been proposed, some focus on subsystems coopera-
tion communication problems (Stewart et al., 2011), some
work on plantwide optimization or stability (Venkat et al.,
2005).

The previous works are all in the absence of actuator or
sensor faults. While in large-scale control systems, there
are much more components, resulting in a higher proba-
bility of faults. Thus fault-tolerant control (FTC) of the
distributed control systems is an important subject. The
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sensor faults may provide inaccurately or even fault mea-
surements for controllers, leading to unstable controlled
processes. Sometimes the system states cannot be mea-
sured directly, and the controllers are designed based on
state estimation. Some works have been proposed to solve
output feedback model predictive control. For example,
the moving horizon estimation is combined with MPC
in (Ellis et al., 2014). With the help of the estimation-
based controller idea, one way to restrain the faults is
designing the controllers based on fault estimation (Gao,
2015; Huang et al., 2018; Qin et al., 2017, 2016). With
faults estimation, the controller can be designed with the
fault-free estimated states.

The distributed observer in this work is different from the
fault and state estimation of distributed sensor network
systems (Song and Chen, 2014; Liang et al., 2011), this
is for distributed control system (Yin and Liu, 2019).
Moreover, for distributed control system state estimation,
the most existing states observers are usually designed
based on decentralized systems (Razavinasab et al., 2017),
which will lose all the coupled information, leading to
a slower converge performance. And also, the existing
fault and state observer-based control always estimates the
fault and states together, no matter the current system
is with or without faults(Xiao and Liu, 2020). This kind
of estimation can work, but the estimation performance
can be improved by distinguishing the faulty and unfaulty
estimation mode. The switching mode observer proposed
in this paper can work under state estimation only mode
and both state and fault estimation according to whether
there is a sensor fault or not. The switching mode observer
will improve the observer convergence performances and



then controller performances, especially for intermittent
faults in distributed control systems.

In this paper, a distributed state observer is designed
for a distributed control system with coupled states. The
observer matrices are designed in a distributed way offline,
and states are also estimated in distributed structure,
reducing the computation burden and allowing more on-
line flexibility. Meanwhile, a switching mode observer is
designed, different modes of the observer will work under
the situation with or without sensor faults. The distributed
model predictive controller is designed based on fault-
free estimated states. Finally, the distributed sensor fault-
tolerant model predictive control is implemented.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Notations: ∗ represents the symmetric matrix of the sym-
metric position in a LMI. Rn is real numbers with n
dimensions. N is the set of subsystem number index. ∥a∥
is the standard norm symbol, L2 norm of a discrete time
signal a is defined as ∥a∥22 =

∑∞
k=0 a

⊤(k)a(k), P ≻ 0
denotes the symmetric matrix P is positive definite.

Consider a large-scale discrete time linear system that can
be divided into M subsystems, each subsystem can be
described as:

xi(k + 1) = Aixi(k) +
∑

j∈Ni,j ̸=i

Aijxij(k) +Biui(k)

zi(k) = Cixi(k) ∀i ∈ {1, 2, . . . ,M}
(1)

where i ∈ {1, 2, . . . ,M} is the number of each subsystem,
Ni are the set of neighbor subsystems numbers of subsys-
tem i, the neighbor subsystems are the subsystems that
have shared (coupled) states with subsystem i. xi ∈ Rni ,
ui ∈ Rmi and zi ∈ Rpi are variables of states, control in-
puts and measured outputs of subsystem i, xij are coupled
states from subsystem j (j ∈ Ni, j ̸= i). Ai, Aij , Bi and Ci

are constant matrices, Aij matrix related to the coupled
states. Consider the sensor faults and noises of outputs
measurements, system (1) with measurements are:

xi(k + 1) = Aixi(k) +
∑

j∈Ni,j ̸=i

Aijxij(k) +Biui(k)

yi(k) = Cixi(k) + Fifi(k) + wi(k)

∀i ∈ {1, 2, . . . ,M}

(2)

where fi(k) ∈ Rpi , if the sensor faults are additive faults,
Fi is an identity matrix, wi are measurements noises.
fi and wi are unknown but bounded by ∥fi∥ ≤ ϵ and
∥wi∥ ≤ σ, ϵ and σ are known bounds. Then zi in (1)
are the physical outputs, yi in (2) are actual measured
outputs.

Problem Description: We assume that all the states can
be estimated from the measured outputs and can be
controlled in the proposed systems, i.e. the following
assumptions are true.

Assumption 1. Each subsystem i is controllable.

Assumption 2. Each subsystem i is observable.

The estimated states are used for model predictive con-
troller (3) design, and during the process, sensor faults may
happen, leading to the wrong states estimations, which will

give an unexpected control performance. To overcome the
effects from sensor faults, we need to design the sensor
faults observer for system (2) in a distributed way, and to
improve the observer performance, a switching observer is
designed for the faulty mode and unfaulty mode.

Distributed model predictive control problem:

min
ui

N∑
k=1

li(xi(k), ui(k))

s.t.xi(k + 1) = Aixi(k) +
∑

j∈Ni,j ̸=i

Aijxij(k)

+Biui(k)

xi ∈ Xi, ui ∈ Ui, i ∈ {1, 2, . . . ,M}

(3)

where li(xi, ui) is the MPC objective function of subsystem
i, the convex set Xi and Ui are states and control inputs
constraints of subsystems.

3. SWITCHING OBSERVER DESIGN FOR
DISTRIBUTED CONTROL SYSTEMS BASED ON

FAULT SIGNAL

In this section, a states and sensor fault observer is given
for distributed control systems, the observer is designed
in a distributed way for each subsystem. Furthermore, to
improve the convergence performance, a switching rule is
proposed according to the fault signal, the observer can
be switched between the states only observer and the both
states and sensor faults observer.

3.1 States only observer for distributed control system

When there is no sensor fault in the the subsystem i,
actually only the states need to be estimated, the sensor
faults are not necessary in the observer, moreover, if they
are still considered, it will slow down the convergence.
Thus the states observer is only designed for system (1).

Consider the state observer form:

x̂i(k + 1) = Aix̂i (k) +
∑

j∈Ni,j ̸=i

Aij x̂ij (k)

+Biui (k) + Li (yi (k)− ŷi (k))

ŷi = Cix̂i(k) + wi

(4)

where x̂ is the estimation variable, Li is the observer gain
for subsystem i.

The Li is designed according to the following Theorem.

Theorem 1. If there exists a positive definite matrix PNi ,
a matrix Yi and a constant γi, making the following
optimization problem solved, then the error dynamic of
the observer (4) is stabilized for subsystem i, and for

unknown and bounded wi, the performance
∑T

k=0 ∥ei∥2 ≤∑T
k=0 γi∥wi∥2 is satisfied.

minγi

s.t.

 −PNi + I ∗ ∗
0 −γ2

i I ∗
PiANi − YiCNi PiI −Pi

 ≺ 0

PNi ≻ 0

γi > 0

(5)

where Li = P−1
i Yi. PNi and Pi are with different di-

mensions, PNi ∈ RnNi
×nNi is the dimension extended



symmetric matrix of Pi, with the same dimension of all
states in subsystem i and its coupled states. Pi is a part
of PNi with Pi = UiPNiU

⊤
i , Ui ∈ Rni×nNi is a transition

matrix, composed by 0 and 1.

Proof. Define the error of estimation (4):

ei(k) = xi(k)− x̂i(k) (6)

the error dynamic is

ei (k + 1) = xi (k + 1)− x̂i (k + 1)

= Aixi (k) +
∑

j∈Ni,j ̸=i

Aijxij (k) +Biui (k)

−Aix̂i (k)−
∑

j∈Ni,j ̸=i

Aij x̂ij (k)−Biui (k)

− LiCi (xi (k)− x̂i (k))

= Aiei (k) +
∑

j∈Ni,j ̸=i

Aijeij (k)− LiCiei (k)

(7)

In this form, because of the existence of coupled states
xij , Li is still need to be calculated in a centralized way,
or the coupled will be omitted. The centralized design and
computation cannot provide a flexible control framework,
when one parameter changes, all the subsystems need to be
recomputed, and also, centralized design will increase the
computation burden. In the following proposed observer,
the transition matrices with 0−1 binary variables Ti, UN i

are introduced to realize the distributed observer design for
coupled subsystems. The following transition descriptions
are used:

xi(k) = TixN i(k)

ei(k) = TieN i(k)
(8)

where xN i = [xT
i xT

j ]
T , eN i = [eTi eTj ]

T , j ∈ N i, and
the extended system matrices are:

AN i =

[
Ai . . . Aij

0 · · ·
0 · · · Aj

]
CN i = [Ci 0pi×nNi ]

(9)

In this way, the error dynamic can be described as:

ei(k + 1) = (TiAN i − LiTiCN i)eN i (10)

Define the error dynamic Lyapunov function as: Vi(k) =
eTi (k)Piei(k), first consider ωi = 0, we have:

Vi (k + 1)− Vi (k)

= eN i
T (k) (TiAN i − LiTiCN i)

T
Pi (TiAN i − LiTiCN i)

× eN i (k)− (UieN i (k))
T
Pi (UieN i (k))

= eN i
T (k)

[
(TiAN i − LiTiCN i)

T
Pi (TiAN i − LiTiCN i)

−PN i] eN i (k) ≤ 0
(11)

i.e.

(TiAN i − LiTiCN i)
T
Pi (TiAN i − LiTiCN i)− PN i ≤ 0

(12)
which shows the error dynamic can be stabilized. Then
when there are wi ̸= 0 and bounded, the time difference
of Lyapunov function need satisfies the following to guar-
antee the performance:

Vi (ei (k + 1))− Vi (ei (k))

= [(TiAN i − LiTiCN i) eN i (k) + wi (k)]
T
Pi

× [(TiAN i − LiTiCN i) eN i (k) + wi (k)]

− (UieN i (k))
T
Pi (UieN i (k))

= eTN i (k)
[
(TiAN i − LiTiCN i)

T
Pi (TiAN i

−LiTiCN i)− PN i + I] eN i (k)

+ 2wT
i (k)Pi (TiAN i − LiTiCN i) eN i (k)

+ wT
i (k)

(
Pi − γ2

i I
)
wi (k)− eTN i (k) eN i (k)

+ γ2
i w

T
i (k)wi (k)

(13)

Write them in matrix form:[
eN i

T (k) ωi
T (k)

]
×[

(TiAN i − LiTiCN i)
TPi(TiAN i − LiTiCN i)− PN i + Ii

Pi(TiAN i − LiTiCN i)

(TiAN i − LiTiCN i)
TPT

i

Pi − γ2
i I

] [
eN i (k)
ωi (k)

]
≺ 0

(14)

or simplified as:[
(TiAN i − LiTiCN i)

TPi(TiAN i − LiTiCN i)
Pi(TiAN i − LiTiCN i)

(TiAN i − LiTiCN i)
TPT

i
Pi

]
+

[
−PN i + I 0

0 −γ2
i I

]
≺ 0

(15)

Then apply the Schur complement lemma twice, the LMI
in Theorem 1 is obtained. If sum up Vi(k) from k = 0 to

k = T , from (13),
∑T

k=0 ∥ei∥2 ≤
∑T

k=0 γi∥wi∥2 is derived.

3.2 States and sensor faults observer

In this subsection, distributed observer is designed for both
states and sensor faults in the meantime. The observer for
system (2) is designed as:

x̂i (k + 1)

= Aix̂i (k) +
∑

j∈Ni,j ̸=i

Aij x̂ij (k) +Biui (k)

+ Li [yi (k)− Cix̂i (k)− Fiυ̂i (k)]

mi (k + 1)

= LFi

CiAix̂i (k) + Ci

∑
j∈Ni,j ̸=i

Aij x̂ij (k)

+CiBiui (k)] + LXi [yi (k)− Cix̂i (k)− υ̂i (k)]

υ̂i (k) = mi (k)− LFiyi (k)

(16)

where mi is an auxiliary vector for sensor fault estimation,
vi(k) = fi(k)+wi(k) combines the sensor fault and sensor
noises (if Fi is identity matrix, these can be combined). Li

and LXi are designed observer gains.

The states estimations and sensor faults estimations error
are:

ei(k) = xi(k)− x̂i(k)

ϵi(k) = υi(k)− υ̂i(k)
(17)

Then the corresponding error dynamics can be expanded:



ei (k + 1) = xi (k + 1)− x̂i (k + 1)

= Aiei (k) +
∑

j∈Ni,j ̸=i

Aijeij (k)

− Li [yi (k)− Cix̂i (k)− Fiυ̂i (k)]

(18)

εi (k + 1) = υi (k + 1)− υ̂i (k + 1)

= υi (k + 1)−mi (k + 1) + LFiyi (k + 1)

= υi (k + 1) + LFi

CiAixi (k) + Ci

∑
j∈Ni,j ̸=i

Aijxij (k)

+CiBiui (k) + Fiυi (k)]− LXi [yi (k)− Cix̂i (k)

−Fiυ̂i (k)]− LFi

CiAix̂i (k) + Ci

∑
j∈Ni,j ̸=i

Aij x̂ij (k)

+CiBiui (k) + Fiυ̂i (k)]

= (LFiCiAi − LXiCi) ei (k) + LFiCi

∑
j∈Ni,j ̸=i

Aijeij (k)

+ (LFiFi − LXiFi) εi (k) + wi (k)
(19)

Based on the definitions and analysis, the observer gains
are designed from the Theorem 2.

Theorem 2. (Xiao and Liu, 2020) If there exists a positive
definite matrix PNi , a matrix Yi and a constant γi, making
the following optimization problem solved, then the error
dynamic of the observer (16) is stabilized for subsystem
i, and for unknown and bounded wi, the performance∑T

k=0 ∥ei∥2 ≤
∑T

k=0 γi∥wi∥2 is satisfied.

minγi

s.t.

 −PNi + I ∗ ∗
0 −γ2

i I ∗
PiΘi − YiΦi PiI −Pi

 ≺ 0

PNi ≻ 0

γi > 0

(20)

the matrices are defined as:

Θ =

[
TiAN i 0

LFiCiTiAN i 0

]
Φi = [TiCNI I]

[Li LXi]
T
= P−1

i Yi

The proof of Theorem 2 is a extended of proof of Theorem
1, and the similar proof can be found in our previous work
(Xiao and Liu, 2020).

Switching mode: The observer mode is chosen based on
the fault detection signal, assume that F is the fault de-
tection result, when F = 1, there is sensor fault detected,
when F = 0, there is no sensor fault detected.{

F = 0, state observer only
F = 1, state and fault observer

(21)

4. STATE OBSERVER BASED DISTRIBUTED
MODEL PREDICTIVE CONTROL

In this section, distributed model predictive controller is
designed. The controller design follows the previous states
and sensor fault estimation. Due to the simultaneous es-
timation, the states information used for controller design

is fault-free, thus actually sensor faults tolerant is imple-
mented by the state observer.

For each subsystem, the MPC control law is obtained by
solving the following online optimization problem

min
ui

Ji = xi(N)
T
PNixi (N)

+
N−1∑
s=0

(
xi(k + s)

T
Qixi (k + s)

+ui
T (k + s)Riui (k + s)

)
(22)

s.t.xi (k + 1) = Aiixi (k) +
∑

j∈Ni,j ̸=i

Aijxj (k)

+Biui (k)

(23)

xi ∈ Xi, ui ∈ Ui

xi(N) ∈ Xi,T

∀i ∈ {1, 2, · · · ,M}
(24)

where Qi and Ri are weighting matrices of MPC, PNi

is terminal cost weighting matrix. The cost function for
DMPC of the whole system is the summation of all
subsystems costs.

J =
M∑
i=1

Ji (25)

In the MPC design, the vector x are used as estimated
states. The controller design details can be found in our
previous work (Xiao and Liu, 2020), we omit the design
theory here.

Algorithm 1 synthesizes the Section 3 and Section 4, gives
the integrated sensor faults and states observer and DMPC
controller design algorithm.

5. EXAMPLE

Example 1:
Consider a distributed control system with two coupled
subsystems, subsystem 1 shares states with subsystem 2,
as shown in (26) and (27).

A1 =


1 0 0.2 0 0
0 2 −2 0 0
−1 1 0 0 0
0 0 0 1 2
0 0 0 −0.6 1



B1 =


1 0.2 0 0

−0.2 1 0 0
−1 1 0 0
0 0 1 −0.3
0 0 −1 0


C1 =

[
1 0 1 0 1
0 −1 1 −1 1

]
(26)

A2 =

[
1 0 −1
0 1 −2
−1 0 1

]
A12 =

[
1 0 −1 0 0
0 1 1 0 0
0 0 0 0 0

]

B2 =

[
0 1
−1 0.3
−2 1

]
C2 =

[
1 1 0
0 0 1

] (27)

The distributed MPC controllers are designed for each sub-
system, control input u2 is constrained by −5 ≤ u2 ≤ 5.



Algorithm 1 Observer-based fault-tolerant distributed
MPC
Initialization: At time k, receive the measurements
y(k) from sensors;

Fault detection: Detect if there is sensor fault, then
send the fault detection signal F ;
Switching mode state and fault estimation:
For each subsystem i, i ∈ {1, . . . ,M}
Receive the fault detection signal F ,
Receive the coupled estimated states from neighbor
subsystems observer,
if F = 0, estimation turns to states only observer mode
as the designed observer (4);
if F = 1, estimation turns to both sensor faults and
states observer mode as the designed observer (16), get
x̂(k) and v̂(k);

Send the states estimations x̂i(k) and coupled states
estimations x̂ij(k) to each subsystem i controller;

Distributed model predictive control design:
For all subsystem i, i ∈ {1, . . . ,M}
Receive the estimated states x̂i(k) and coupled states
x̂ij(k)of neighbor subsystems (estimated sensor faults
are not used in controller design);
Solve the online optimization problem (22) using the
estimated states, and obtain the DMPC control law
ui(k);
Wait for the next sampling time k + 1
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Fig. 1. States x1, x2 in subsystem 1

The sensor fault fs = 0.05 arises from k = 40 to k = 80 in
subsystem 1, thus when k = 40 to 80, the distributed
observer of subsystem 1 is switched to faults and states
estimation mode, and at other instants, the distributed
observers for two subsystems only estimate the states.
Figure 1, 2 and 3 show the controlled states results. In
the figures, the solid lines represent the states revolutions
under switching mode observers, and the dot lines repre-
sent the states under one observer mode (faults and states
estimation). The improvements are mainly in two aspects:
one is during the tracking stage, the system under switch-
ing mode observers can track the reference faster than the
one mode observer, and with a flatter adjusting process,
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Fig. 2. States x3, x4 in subsystem 1
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Fig. 3. States in subsystem 2

the other is during the faulty period, the system under
switching mode also get a better performance, especially
in subsystem 2, because that subsystem 2 does not under
the fault and states estimation mode, which will give a
more accurate estimation.

Example 2: Consider a two-CSTR chemical process, the
two linear models are given as:

A1 =

[
0.8198 0.0065

0 0.8187

]
A21 =

[
0.1587 0

0 0.1586

]
(28)

A2 =

[
0.8909 0.0067

0 0.8899

]
A12 =

[
0.063 0
0 0.0629

]
(29)

B1 =

[
1.96× 10−5 8.69× 10−5

0 0.0226

]
(30)

B2 =

[
6.81× 10−6 1.75× 10−4

0 0.0472

]
(31)

The sensor fault in CSTR2 arises from k = 200 to k = 230
as a sine function of amplitude 6. The Figure 4 and 5 show
the controlled x−x∗ dynamics of production concentration
and reaction temperature in two CSTRs.The blue line is
temperature, the red line is concentration. The results
tell the proposed sensor fault-tolerant DMPC approach
is effective.
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6. CONCLUSION

In this paper, distributed sensor fault-tolerant model pre-
dictive control is considered, the controller is designed
based on fault and state estimation for intermittent sen-
sor faults. Two central problems are solved: one is a
distributed observer for the distributed control system,
the other is an observer switching mode strategy. With
a totally distributed design, distributed system observer
matrices is designed offline with some transition matrices,
and state and fault estimation are computed online with
communicated coupled states information. The observer
are designed in two modes: state only estimation, both
state and fault estimation are switched due to the absence
or presence of the sensor faults. The design in this paper
provides more flexibility for distributed model predictive
control systems, especially in flexible chemical processes.
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