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Abstract: The closed-loop performance of model predictive controllers (MPCs) is highly depen-
dent on the choice of prediction models, controller formulation, and tuning parameters. However,
prediction models are typically optimized for prediction accuracy, instead of performance, and
MPC tuning is typically done manually to satisfy (probabilistic) constraints. In this work,
we demonstrate a general approach for automating the tuning of MPC under uncertainty. In
particular, we formulate the automated tuning problem as a constrained black-box optimization
problem that can be tackled with derivative-free optimization. We rely on a constrained variant
of Bayesian optimization to solve the MPC tuning problem that can directly handle noisy and
expensive-to-evaluate functions. The benefits of the proposed automated tuning approach are
demonstrated on a benchmark continuously stirred tank reactor case study.
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1. INTRODUCTION

Model predictive control (MPC) is one of the most widely
used methods for the control of constrained multivariable
systems (Rawlings and Mayne, 2009). The closed-loop per-
formance of MPC strongly depends on (i) the quality of its
underlying process model; (ii) the formulation of the objec-
tive and constraints; and (iii) the choice of several tuning
parameters (e.g., prediction horizon, weights in cost func-
tion, and constraint backoff terms) (Garriga and Soroush,
2010; Paulson and Mesbah, 2018). A major challenge in
MPC tuning arises from the non-trivial relationships be-
tween the tuning parameters and the closed-loop control
performance and constraint satisfaction (Lu et al., 2020).
As such, MPC tuning via trial-and-error or other heuristic
strategies may require a significant number of closed-loop
simulations, which can quickly become prohibitive espe-
cially when system uncertainties are considered.

Recently, there has been a growing interest in automated
strategies for controller tuning using Bayesian optimiza-
tion (BO); e.g., see Berkenkamp et al. (2016); Bansal
et al. (2017); Neumann-Brosig et al. (2019); Forgione et al.
(2019); Khosravi et al. (2020); Lu et al. (2020); Paul-
son and Mesbah (2020). BO has emerged as a powerful
derivative-free method for optimizing black-box functions
in various applications (Shahriari et al., 2015); most no-
tably for hyperparameter selection of machine learning
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algorithms (Snoek et al., 2012), including in the context
of approximate MPC design (Bonzanini et al., 2021). BO
is deemed particularly useful for solving MPC tuning
problems since it can accommodate a mixture of contin-
uous and discrete decision variables and also overcome
the limitations of alternative derivative-free optimization
methods such as genetic algorithms and particle swarm
optimization (Garriga and Soroush, 2010).

In any model-based control approach, the chosen model
plays a pivotal role in the design of the controller; how-
ever, identification of the model has been traditionally
separated from controller design. An alternative idea that
has been gaining popularity in recent years is to treat the
identification process as a “tuning parameter” that should
take into account the intended control application. The
notion of identification for control (I4C) has been heavily
studied in the context of fixed-order controllers for linear
time-invariant systems (Gevers, 2005). Recently, the 14C
was extended to MPC in (Piga et al., 2019), wherein BO
is used to search for the best (parametrized) prediction
model for MPC by directly optimizing closed-loop perfor-
mance determined from plant (or high-fidelity simulation)
data. We take a similar perspective in this work and show
how the framework is applicable to more general MPC
formulations.

The main focus of this paper is on integrated performance-
driven model learning and MPC tuning under uncertainty.
The explicit incorporation of uncertainty into the for-
mulation of the automated tuning optimization problem
(through both the objective and constraints) is one of
the main contributions of this work. In particular, we



show how independent uncertainty samples can be used
to obtain effectively noisy measurements of objective and
constraint, which can be accounted for in the BO through
proper estimation of the noise variance. The second con-
tribution is to leverage a constrained variant of BO (Gard-
ner et al., 2014; Herndndez-Lobato et al., 2016) to di-
rectly handle output constraints. Constrained BO has been
shown to overcome challenges with barrier methods, which
penalize constraint violation in the objective, since the
constraints are separately modeled and thus provide an
independent representation of the feasibility region.

The remainder of the paper is structured as follows. In
Section 2, we define the problem of interest. In Section
3, a general overview of the parametrized MPC policy
is provided. Section 4 presents our performance-driven
MPC tuning algorithm including the details of the con-
strained BO method used. The effectiveness of the pro-
posed method is demonstrated on a nonlinear continuously
stirred tank reactor case study in Section 5 and conclusions
are provided in Section 6.

2. PROBLEM FORMULATION

Consider an uncertain, time-invariant nonlinear system of
the form
Try1 = [plant (Th, Uk, W), (1a)
Yk = hplant(xkvvk)v (]-b)
where k € Ny denotes the discrete time index, x € R"
denotes the system state, uy € R™ denotes the control
input, yr € R™ denotes the measured output, wy € R™v
denotes the process noise, and vy € R™ denotes the
measurement noise. The initial state xg, the process noise
sequence wy._1, and the measurement noise sequence vg.r
are assumed to be random variables for some finite horizon
T € N. Control performance J(yi.7,u1.7) is assumed
to be some known function of the output and input
sequences. Since the output depends on the realization of
the uncertainty 6 = (2o, wo.r—1, V0.1 ), our actual objective
is to minimize the expected performance cost

Es{J(yrr, urr)} = /A Tz urn)p(B)ds,  (2)

where p(d) denotes the probability density function and
A is the support of the random vector §. The controlled
system should also satisfy hard input constraints
ug.r € Ug.r =Up X -+ x Up, (3)

and joint chance constraints on the output

Ps{yir € Yir =Y1 x--- xYp} > 1 —¢, (4)
where € € [0,1] denotes the allowed violation probability.
The ideal controller design problem can be formulated in
terms of the following stochastic optimization problem

lernEll{[l Es{J(y1.7, u1.T)}, (5a)
St. Xpy1 = fplant(mk,uk,wk), Vk € Ngﬂil, (5b)
Yk = hplant(xkavk)a vk € Ngv (50)
ug = Tk (Yo:x) € Uy, vk eNg, (5d)
]P)(S{ylzT S Yl:T} Z 1-— €, (56)

where m = {mg, 71, ..., 77} denotes the control policy that
is composed of a sequence of control laws ), : R+
R™: which are arbitrary functions of the history of mea-
sured outputs and II denotes the set of possible control

policy structures. This problem is extremely challenging to
solve for several reasons including the set of functions = €
IT is infinite dimensional and the probabilistic operators
Es{-} and Ps{-} cannot be computed exactly for general
nonlinear systems. Another key complication considered in
this work is that functions fpiant(-) and Aplant () and uncer-
tainty distribution § ~ p(d) may not be explicitly known.
Thus, (5) belongs to the challenging class of constrained
black-box optimization problems under uncertainty.

Since the optimization problem (5) cannot be solved di-
rectly, one must resort to a heuristic controller design
strategy such as model predictive control (MPC) (Rawl-
ings and Mayne, 2009). The standard MPC design strategy
involves: (i) identification of a control-relevant model of the
system (1) using first-principles or system identification
techniques; (ii) specification of the MPC controller using
this control-relevant model to make internal predictions
about the future system behavior to select the optimal
control inputs; and (iii) trial-and-error experimentation
to select the remaining MPC tuning parameters (e.g.,
prediction horizon, input and output weight matrices, and
constraint backoffs) that can have a strong influence on
closed-loop performance. Not only are the tuning param-
eters selected in an ad-hoc way in this approach, it is
difficult to know how the quality of the predictions of the
identified model will translate into control performance.

To address these challenges, inspired by the notion of 14C,
we take a performance-driven perspective in this work in
which the model of (1) is treated as a degree of freedom
that can be used to minimize the closed-loop performance
cost. The proposed MPC parametrization is summarized
in the next section, which is followed by a description of
an automated procedure for simultaneously selecting the
internal model and other relevant MPC tuning parameters.

3. POLICY APPROXIMATION: PARAMETRIZED
MODEL PREDICTIVE CONTROL

A critical component of MPC is the model used to predict
the outputs given a sequence of inputs. Let the control-
relevant model be defined as
Sk+1 = fmod(ska U, 0m)7 (6&)
Yk = himod (k3 0m), (6b)
where s € R™ is the state of the control-relevant model
at time step k € Ny and 6,, € R™™ is the set of model
parameters. Although written in state-space form, (6)
could be a realization of an input-output black-box model
such as a nonlinear auto-regressive model with exogenous
variables (NARX) in which case 6,, would represent the
coefficients of the selected basis functions.

Given the approximate system model (6), the MPC con-
troller solves the following finite-horizon optimal control
problem at each sampling time k € N7 :

. N, 7
n > it Wik wigk; 0o), (7a

st stk = fmod(3i|k:aui\k;0m)7
Yilk = hmod(si|k§ Om)s

(Yilr + 06, wilr) € Yiei X Ugpi,
SO\k = §k> (76



where N, denotes the prediction horizon; s;;, and w;;, are,
respectively, the predicted state and control input at time
k+i given information at time k; Uy = {uq|y, . . - ,uN_1|k}
is the control input sequence; S € R™s is the current
state estimate; ¢ R"™ x R™ x R™.° — R is the
stage cost function parametrized by 6, € R™.°; and
0, € R™:t are the constraint backoff parameters that
can be used to improve the robustness properties of the
controller, as discussed in, e.g., (Paulson and Mesbah,
2018). The closed-loop performance index J(y1.7,u1.7) is
not necessarily the same as the MPC cost function (7a).
In most cases J(yi1.7,u1.r) will be some function that
reflects engineering and economic goals, while £(-) can be
substantially simplified to facilitate online optimization.

Let {uz*‘k(@c, O, 00,0, Np)}f»\]:‘”(;1 denote the optimal solu-
tion to (7) for a given state estimate and a set of tuning
parameters. The receding-horizon control law, implicitly
defined in terms of the solution to (7), is given by

K,c(§k; 91’717903 ebva) = u6|k(§k; Qm, eoveba Np)- (8)

Since the control-relevant state may not be directly mea-
sured, we assume a parametrized state estimator of the
following form exists

Sk+1 = Ke (8, Uk, Y15 0e), (9)
where 0, € R™. denotes any free parameters in the
estimator. For example, 6. could represent the process and
measurement noise matrices in an extended Kalman filter
(Hoshiya and Saito, 1984). By combining the specified
controller (8) and estimator (9) with the system dynamics
(1), we can represent the closed-loop system in terms of
the augmented state zx = (z, S)

241 = fa(zk, wi; 0), (10a)
up = Kel(2k; 0), (10b)
Yk = he(2k, vk), (10c)

where f. : R"* xR™» xR™ — R™= defines the autonomous
closed-loop dynamics, k¢ : R™ x R™ — R™ is the
control function in the augmented space, he : R™ X
R™ — R™ is the measurement function in the augmented
space, 0 = (0, 0o, 0, Ny, 6) denotes the complete set of
tuning parameters appearing in the control structure, and
n, = ng +ng and ng = Ngm + Moo + Ngp + Nge + 1 are
the augmented state and tuning parameter dimensions,
respectively. Under this restricted class of control policies,
we can construct an approximation to (5) as follows

gélg ]E(S{J(yl:TvulzT)}a (11&)
s.t. (10), Ps{y1.r € Yi.p} > 1 —e. (11b)

Note that the control input constraints (3) are not included
in this formulation as they are directly enforced by the
MPC law (7). The key difference between (11) and (5)
is that the proposed approximation (11) optimizes over a
finite dimensional space ® C R™. The problem is also a
single stage one in which a full simulation can be carried
out once the tuning parameters 6 are fixed. As such, we are
not concerned about adapting the control policy over the
time steps k = 1,..., T, as this is implicitly done through
the MPC law defined above. However, this problem is
still not immediately solvable due to the presence of
the probabilistic operators. We attempt to address this
challenge next using a simulation optimization paradigm
(Amaran et al., 2016).

Remark 1. It is important to note that the number of
model parameters ng ,, in (6) can be quite large in generic
black-box models, which inherently increases the complex-
ity of the problem. As such, it is advised to encode as
much prior knowledge as possible in a particular problem
at hand, which will typically result in a gray-box model
defined in a reduced parametric space.

Remark 2. Although we focused on a nominal MPC for-
mulation above, this could straightforwardly be replaced
with robust or stochastic MPC methods that directly
account for uncertainty within the predictions. However,
this will come at the cost of more expensive closed-loop
simulations, as well as the need to develop an uncertainty
description. Again, one can imagine that some parameters
of the uncertainty distribution 6, could also be treated as
controller tuning parameters.

Remark 3. Whenever the state of the model (6) is mea-
surable, we can ignore the state estimator (9). It is worth-
while noting, however, that the estimator could still be
useful whenever it is desired to adapt some of the model
parameters online due to unexpected drifts or faults.

4. PROPOSED CLOSED-LOOP SIMULATION
OPTIMIZATION METHOD

4.1 Formulation as simulation optimization problem

Let f(0) = Es{J(y1.7,u1.7)} denote the expected perfor-
mance and ¢(0) = Ps{y1.r € Y1.r} — 1 + € be a shorthand
for the chance constraint. We can now restate (11) in the
following compact manner

min f(6) st. ¢(8) >0. (12)
As discussed in (Paulson and Mesbah, 2018), the uncer-
tainty propagation steps needed to evaluate f(#) and ()
can be performed using a variety of different techniques.
Since the number of uncertainties ns = n, + n,7T +
n, (T + 1) grows with the number of time steps T, Monte
Carlo (MC) sampling is generally a good choice since its
convergence rate is independent of the ns and instead only
depends on the number of samples. Using MC sampling,
the objective and constraints in (12) can then be approx-
imated as (Kleywegt et al., 2002)

_ M 1 y
FO) = M7V T ut ), (13a)
1M j
0(9) ~ M Zj:l (1Y1:T (y{;T) -1+ 6)7 (13b)
where M denotes the number of samples, 14(z) denotes
the indicator function over the set A (1 when z € A and 0
otherwise), {61,...,0™} are independent and identically
distributed (i.i.d.) samples of 6 ~ p(d), and (yi.p, ul.r)
are the simulated closed-loop output and input sequences
given the jth uncertainty sample §7. It is worth noting that
the only assumption about the system thus far is that we
have the ability to execute (10) for any choice of tuning
parameters 6 € O, and every simulation is performed
under an i.i.d. sample of 9.

Since a new set of uncertainty samples is drawn every
time we run the closed-loop “simulator” (10), the sample
average approximations in (13) produce stochastic/noisy
observations of the objective and the constraints

vl = f0)+7, yt=c(0) + €, (14)



where f and ¢ represent the observation noise for f(6)
and c(0), respectively. For any M, these estimators are
unbiased, i.e., E517__475M{yf | 9} = f(@) and E(Sl’“_,éM {yc ‘
0} = c(0); however, these observations may have relatively
high variance unless M is large. In general, it may not be
possible to select a large M since the closed-loop simu-
lation or experiment can be prohibitively costly. Instead
these functions can only be evaluated on the order of 100
times or less, meaning M cannot be large enough to ignore
noise in the observations. As such, we want to utilize
an algorithm that can systematically explore the tuning
parameter space (relative to random or grid-based search
methods) and can also accommodate noisy objective and
constraint observations.

4.2 Overview of Bayesian optimization framework

BO is a family of algorithms that can solve black-box
optimization problems in the presence of noisy observa-
tions. The basic idea in BO is to construct a surrogate
model of the objective function f(6) using a set of initial

n observations denoted by D,, = {(61.n,%].,)}. The sta-
tistical surrogate model provides a posterior distribution
of the objective function that can be combined with an
acquisition function to decide where to sample next. The
acquisition function is defined in a way to tradeoff between
uncertainty (related to variance) and performance (related
to mean) at unexplored points 6 € 6. The new observation

is added to the dataset, i.e., Dy11 = {Dp, (0n+1,y£+1)},
which is then used to update the surrogate model. This
process continues until the surrogate model converges to
the global solution, or the maximum number of iterations
is reached. See, e.g., Shahriari et al. (2015) for a recent
review of BO.

First, we discuss the traditional BO strategy for (12)
that neglects constraints ¢(d) > 0 and then describe an
extension that modifies the acquisition function to account
for the probability that constraints are satisfied. In this
work, we exclusively use Gaussian process (GP) surrogate
models (Rasmussen, 2003). In particular, we assume that
the objective function has a GP prior of the form f(6) ~
GP(uo, k), where ug : ©® — R is the prior mean and
k : ©® x ® — R is the prior covariance function. There
are many possible choices for the covariance function. In
this work, we selected the squared exponential function

1
k(0,6") = exp (—2129 - 9’||2> ;

where [ is a length-scale parameter. Under the GP prior
and assumed i.i.d. Gaussian noise e/ ~ N(0,02), the
function evaluations y{m are jointly Gaussian

y{:n ~N(m, K +o%I,), (16)
where [m]; = po(60;) are the elements of the mean vector
and K € R" "™ is a symmetric covariance matrix with
elements [K]; ; = k(6;,6;). This implies the corresponding
function value f(#) at any test point # must be jointly
Gaussian with y{;n, ie.,

)~ (L) s ) o

where k(#) € R” is a vector of covariance terms between
01., and 0, i.e., [k(0)]; = k(6;,0). Due to the properties of

(15)

joint Gaussian random variables, we find that the posterior
distribution p(f(9)|y{m, 01.n,0) of the objective, given all
available noisy observations, is Gaussian with the following
mean and covariance (Rasmussen, 2003)

pn(0) = po(0) + k(0) T (K +0°L)(yf,, —m),  (18a)

o2(0) = k(0,0) —k(0) " (K + 0*I,,) " "'k(6). (18b)
Given this posterior distribution, we still need to opti-
mize over an acquisition function «(6;D,,) to search for
the next optimal sampling point 6,,41. Here, we focus on
the expected improvement (EI) criteria that measures the
expected amount by which the current objective will be
improved over some incumbent (or current best) solution.
The EI acquisition function has been shown to be analyt-
ically computable for a GP model

ap1(0; Dn) = 0n(0)(2n(0) 2 (20 (0)) + &(2n(0)),  (19)
where z,,(0) = (n—pn(0))/0,(0), ® and ¢ are, respectively,
the standard Gaussian cumulative density and probability
density functions, and 7 is the incumbent solution. The
“best” choice of 17 depends on the context; for deterministic
objective evaluations, it is often set to the best observed
value n = max;e(1, .. n} ylf However, as discussed in (Wang
and de Freitas, 2014), this choice can be quite fragile in
the stochastic setting and thus we use the best mean value
1 = mingee tn(0) as a more reasonable alternative.

4.8 Including constraints in expected improvement

To handle the black-box constraints, we now modify
the acquisition function to show improvement only when
¢(f) > 0 holds. Similarly to the objective, we model the
constraint function ¢(#) with a GP prior whose evaluations
are corrupted with Gaussian noise. We must then weight
the original EI in (19) by the probability of the constraints
being satisfied. This results in the expected improvement
with constraints (EIC) that can be analytically computed
as follows (Gardner et al., 2014)

agic(0; Dy) = agi(0; Dn)P{c(0) > 0|D;, },

, 15, (6)
aEI(ev Dn)(b (0_%(9)) 3

where D¢ = {(01.n,95.,,)} is the set of n noisy constraint
observations and u¢(6) and o&(f) are, respectively, the
posterior predictive mean and standard deviation of the
GP surrogate model for ¢(6) — similarly defined to (18) for
the objective. Due to the presence of constraints, we must
modify the definition of the incumbent value 1 to be the
best mean value such that the constraints are satisfied.
Since we cannot guarantee that constraints are satisfied
given only noisy observations, constraint satisfaction can
be enforced in a probabilistic sense

— i 1 (0)
n = min wn(0) s.t. <I>< -

)28

for a relatively small 8 € (0,1). However, we note that
the existence of a feasible solution to (21) cannot be
guaranteed due to, e.g., limited data available for the con-
straints. To overcome this challenge, the factor ag;(6; D,,)
in (20) can be ignored to search only for a feasible point
by maximizing the probability of constraint satisfaction
(Gelbart et al., 2014).

(20)

(21)

In our proposed strategy, the next sampling point 6,41 is
obtained by solving the optimization problem
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Fig. 1. Illustration of how constrained BO method can be
used for data-driven automatic MPC tuning under
constraints. The blue box denotes the closed-loop
experiment or simulation that must be performed 1
or more times for fixed tuning parameters. The red
box shows the constrained BO steps, which must be
executed to decide the next best tuning parameter
values to use for closed-loop data collection.

0,41 = argmax agic(6; Dy). (22)
0O
Since the acquisition function is cheap to evaluate (relative
to f and c¢), its maximization can be carried out more
efficiently. An overview of various solution methods for
(22) that can avoid local solutions is provided in (Gardner
et al., 2014). An illustration of the proposed automated
MPC tuning strategy under uncertainty using constrained

BO is shown in Figure 1.

Remark 4. There are several hyperparameters in the GP
regression models that may appear in the mean function,
covariance kernel (e.g., [), or the observation model (e.g.,
noise level 02). There are two main ways for handling these
hyperparameters. The most involved way is to marginal-
ize out the uncertainty in these hyperparameters by de-
termining their posterior distribution given the data D,
using Bayes’ rule. The acquisition function must then be
integrated over this posterior, which can be approximated
using some sampling strategy. A simpler approach is to
approximate this integral in terms of a Dirac delta measure
for the posterior at the maximum likelihood or maximum
a posteriori point estimate. These point estimates can be
found by either maximizing the marginal likelihood or the
unnormalized posterior for which standard optimization
methods are readily available.

Remark 5. The assumed Gaussian noise model with con-
stant variance for the objective and constraint evaluations
in (14) is an approximation made for simplicity. In reality,
the noise level may depend on the specific value of 6, which
should be accounted for to obtain a more accurate GP
surrogate model. One way to do this is to model the noise
with a second GP model, as discussed in (Goldberg et al.,
1998). Future work is needed to best incorporate input-
dependent noise models into constrained BO.

5. NUMERICAL EXAMPLE
5.1 Plant model description and control objectives

We demonstrate the proposed approach on a nonlin-
ear continuously stirred tank reactor (CSTR) problem

adapted from (Paulson and Mesbah, 2018). The following
set of reactions are assumed to take place in the CSTR

A—-B—-C, 2A—>D.

The plant model (1) is assumed to be a discretized version
of the following set of ordinary differential equations

éa = Fleag — ca) — krea — ke, (23a)
ég = —Fep + kica — kacg, (23b)
. kwA
Tk = F (T, — T; Ty — T; 2

R ( R) + pchR( K R) (23c)

B kicaAAHAR + kocg AHpc + k‘gCiAHAD
PCp 7

Tk = (Qx + kwA(Tr — Tx)), (23d)

TMKCpK
where cp and cg denote the concentrations of species A
and B, respectively, Ty is the reactor temperature, and Tk
is the coolant temperature. The control input is the feed
flowrate F' = V;,,/Vg and the reaction kinetics exhibit the
Arrhenius dependence

—Ea
— R(T 273.15
ki = ko e ®(Tr+ ),

Vi e {1,2,3}. (24)
The sampling time was chosen to be ¢ = 0.005 h. We
assume that only species B and the reactor temperature
are measurable online such that y, = (¢, Tr,k) + Vk,
where v, ~ N(0,%,) is noise with ¥, = diag(c%,0%).
For simplicity, we did not consider process noise. The
model parameters can be found in Table 1 and the initial
conditions and relevant constraints are summarized in
Table 2. Since only noisy temperature measurements are
available, the bounds on TR are enforced as a chance
constraint. Instead of the single constraint (4), we enforce
constraints separately at each time point, i.e., Ps{yy €
Yi} > 1 — e where ¢, = 0.05 for all k = 1,...,7T. This
does not change the derivations shown in Section 4 because
we can always define ¢(6) = minge1,.. ry{Ps{yr € Yi} —
14 €x} > 0 in terms of the smallest probability over time.
We assume that our closed-loop objective is to maximize

the production of component B
B(t)dt ~ Z ‘/inCB,k'Fk(st

ty
NB,Total = / n
0 k=0

such that the performance cost is J(y1.7, v1:7) = =B, Total,
where ty = 0.2 h is the final time of the experiment and
T = 40 sampling time intervals.

T-1

(25)

5.2 Parametrized formulation of MPC policy

We emphasize the fact that the plant model (23)—(24) is a
black-box in this work and, thus, cannot be used in model-
based control design. Instead, we look to learn a control-
relevant model of the form (6). In particular, we focus on
an NARX model structure

Yk = INARX (Yk—155 -+ Yk—Lys UWk—1, -+ s Uk—L, ), (26)
where L, and L, denote the number of output and input
lags, respectively. The function fxyarx can be any non-
linear function such as a polynomial or a neural network.
In this work, we selected a second-order polynomial that
ignores the interaction terms. Although in principle L,
and L, could be treated as model parameters 6,,, we
decided to fix them to L, = L,, = 1 to ensure the tuning



Table 1. Parameter values for CSTR case study.

Parameter Value Unit

ko1 1.287 1072 hT

ko 2 1.287 102 h~!

ko3 9.04310° L mol~!h™!
Ea1/R 9758.3 K

Eas/R 9758.3 K

Eas/R 7704.0 K

AHpp 4.2 kJ mol—1!
AHgpc —11.0 kJ mol—1
AHpp —41.85 kJ mol—1!

p 0.9342 kg L—1

cp 3.01 kJ kg=! K1
CpK 2.0 kJ kg=! K1
A 0.215 m?

Vi 10.01 L

mi 5.0 kg

T; 130.0 °C

kw 4032 kJh ' m—2 K1
Qx —4500 kJ h—!

Table 2. Initial conditions and constraints for CSTR

case study.

Variable Init. cond. Min. Max. Unit
ca 1.0 - - mol/L
cB 1.0 - - mol/L
Tr 100.0 100.0 150.0 °C
Tk 100.0 - - °C
F - 5.0 35.0 h—!

parameter space was not too large. This implies that 6, is
composed of 14 coefficients — 7 for each n, = 2 output that
multiplies the basis set {1, [yr]1, [Yr]2, w, (Y], [ykl3, us }.
We fixed the MPC prediction horizon to be N, = 10, as
performance was found to be relatively insensitive to this
choice. We selected an economic MPC objective function
related to the moles of B produced, i.e., £(yx,uix) =
Vines,ix Fijx6t. The reactor temperature constraint is ac-
tive in this problem such that it can easily be violated
whenever the prediction model is not very accurate. To
address this, we include a backoff parameter 6, that we
wish to select using the proposed constrained BO method,
which results in a total of ng = 14 + 1 = 15 tuning
parameters to be optimized.

5.8 Automated MPC tuning using constrained BO and
comparison to sequential model identification

Given the black-box plant description and the parametrized
MPC policy, we can now solve (12) using the constrained
BO method summarized in Section 4. The bayesopt func-
tion in Matlab was used to handle the GP construction
of the objective and constraints, as well as specify the
EIC criteria using the “coupled constraint” option. We
explicitly set the objective and constraint evaluations to
be stochastic such that the variance is included as a hyper-
parameter in the corresponding GP models. We budgeted
a total of Nier = 40 iterations, with the first 5 being
randomly chosen within the assumed parameter space
0 = [-2,2]'* x [0,0.2], i.e., all NARX parameters are
bounded by [—2.2] and the backoff 6, € [0,0.2]*.

I The NARX model is constructed using scaled data, so that all
inputs and outputs are bounded within [0, 1].

157

—
o

moles of B produced

[6)]
— —
— —

5 10 15 20 25 30 35 40
number of iterations

Fig. 2. The maximum performance (moles of B) versus
number of BO iterations for 100 replicate runs. The
dark blue line represents the mean value, the shaded
region is +/- one standard deviation, and the error
bars show the minimum and maximum values.

To focus on constraint handling first, we initially set the
measurement noise variances to zero. The performance
evolution, measured in terms of total moles of B produced,
over the number of iterations is shown in Figure 2 for 100
independent runs of the constrained BO algorithm. We see
a consistent improvement in performance up until around
30 iterations — we also see that the variance in the final
result reduces as number of iterations increases. The re-
sulting closed-loop temperature and feed flowrate profiles
are shown in Figure 3, which tightly satisfy constraints.
To better contextualize these results, we compare this
automated model learning procedure to the traditional
open-loop NARX identification paradigm (see red dash-
dotted lines in Figure 3). In particular, we performed
pseudo random binary step tests on the plant every 100
time steps to collect a total of 3000 input-output data
points. This open-loop dataset was used to train an NARX
model (26) using Matlab’s System Identification Toolbox,
which achieved high accuracy on a holdout dataset, i.e.,
prediction accuracy of 91.5%.

Even though the prediction accuracy is high, the resulting
closed-loop performance is poor in the sense that we
observe significant variability in the control input profile
and minor temperature constraint violations. In fact, the
moles of B produced was 5.62, which is less than half of the
12.17 obtained with the constrained BO method. This is
likely due to the fact that the input-output data were not
sufficiently informative in the regime of high-performance
control. As such, we can interpret the proposed strategy as
a way to select control-oriented prediction models that are
suited to the task at hand — this is important because the
desired set of closed-loop trajectories usually represents
a much smaller slice of the input-output space than that
used in open-loop identification techniques.

Lastly, to demonstrate that the approach is capable of
operating in the presence of uncertainty, we repeated the
analysis above with measurement noise variances op = 0.2
mol and or = 10°C. To keep a small experimental budget,
we selected M = 1. Due to space limitations, we only
show the resulting closed-loop temperature profiles for the
open-loop NARX and constrained BO identified models
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Fig. 3. Closed-loop (a) output and (b) input profiles for
best solution obtained with BO compared to an open-
loop identified NARX model for the noise-free case.

in Figure 4. It is interesting to note that the open-loop
identified NARX model appears to be quite susceptible
to overfitting, which leads to much higher variability and
constraint violations than in the noise-free case. On the
other hand, the constrained BO method is able to select
NARX coefficients that produce temperature profiles with
significantly lower variance and, through proper tuning of
the backoff, completely avoids constraint violations. We
also emphasize that these results were obtained using the
same number of runs as in the deterministic case (only one
experiment performed for a random noise sequence). This
highlights the value of using a GP model that can explicitly
account for noisy objective and constraint violations, as it
helps guide the search in a way that is not overly optimistic
about any one observation.

6. CONCLUSIONS AND FUTURE WORK

We presented an automated performance-driven MPC
tuning strategy for black-box systems in the presence
of uncertainty. Since the MPC tuning parameters gener-
ally affect the closed-loop performance and constraints in
non-convex and non-smooth ways, the automated tuning
strategy relies on derivative-free simulation optimization
methods. In particular, we used a constrained variant of
Bayesian optimization that utilizes state-of-the-art surro-
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Fig. 4. Closed-loop temperature profile obtained using the
proposed constrained BO method compared to an
open-loop identified NARX model in the presence of
measurement noise for 100 Monte Carlo realizations.

gate models for the objective and constraint functions con-
structed from noisy observations. The effectiveness of the
proposed tuning strategy was demonstrated for control-
relevant model learning on a nonlinear continuously stirred
tank reactor case study. We observed a more than two-fold
improvement in performance compared to the traditional
open-loop model identification methods. There are several
interesting directions for future work such as development
of novel constrained Bayesian optimization methods that
can more readily scale to high-dimensional problems and
attempting to account for the noise levels in the objective
and constraint evaluations that can vary with the tuning
parameter values.
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