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Abstract: A model predictive control (MPC) formulation for a mammalian cell fed-batch
bioreactor processes is developed. A nonlinear fundamental model for the bioreactor is used
to generate a database of historical runs comprising of the measurement variables and the
manipulated input feed flow rate to the bioreactor. The database is used with subspace
identification methods to develop a state-space model of the process. The identified model is used
to design various MPC formulations with different objective criteria, including the conventional
trajectory-tracking objective function and a novel terminal objective for maximizing the product
yield at completion of a run. Case studies involving the simulated bioreactor process demonstrate
the efficacy of the MPC algorithms subject to unknown disturbances, random variations
in the inlet feed glucose and glutamine concentrations, and measurement noise. Compared
to the traditional proportional-integral control algorithm, the trajectory-tracking predictive
control algorithm is able to better track the reference glucose concentration set-point with
an improvement of 5.1% in the tracking error. The critical quality attribute predictive control
algorithm designed to maximize the product yield results in a 3.9% increase in the product
concentration at the completion of the run.

Keywords: model predictive control, system identification, fed-batch bioreactor process,
mammalian cell culture, critical quality attribute control

1. INTRODUCTION

Batch and fed-batch processes account for a significant
proportion of the production capacity in the pharmaceu-
tical industry due to the flexible nature of their opera-
tion (Birol et al., 2002). Most fed-batch processes in the
pharmaceutical industry are run around a constant oper-
ating point to maintain ideal conditions for production.
In many cases, the fed-batch pharmaceutical processes
are operated in an open-loop manner, with low yields of
high-valued pharmaceutical products. This operating pol-
icy potentially reduces the production yield significantly,
rendering the fed-batch processes inefficient. The high-
value final product makes determination of an optimal
control profile important, especially for product yield max-
imization (Papathanasiou et al., 2017; Cao et al., 2016; Lu
et al., 2019). Improving the yield of fed-batch processes in
pharmaceutical industry necessitates developing an accu-
rate model of the fed-batch pharmaceutical process and
solving complex constrained mathematical optimization
problems. The determination of optimal feed rate profiles
is an important control problem in many fed-batch phar-
maceutical processes. The solution of the optimal control
problem for fed-batch processes is challenging because
of the nonlinear system dynamics and the presence of
state and input constraints. To overcome this issue, the
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control problems are formulated and solved using simple
and computationally tractable surrogate models, rather
than the nonlinear fundamental first-principles models of
the processes (Jackson et al., 2018). The development
of simple approximation models of the complex nonlin-
ear mechanistic models enables efficiently capturing the
relationships among the system inputs and outputs to
predict the process operation (Caballero and Grossmann,
2008; Bhosekar and Ierapetritou, 2018; Yoshio and Biegler,
2021). The approximation models mimic the behavior of
the fed-batch process accurately while being computation-
ally efficient to evaluate.

Various approximation methods have been reported in the
literature. This work concentrates on the use of data-
driven, global approximations using system identification
techniques. The readily exploitable linear models are of-
ten preferred due to the convenience of identifying linear
state-space models through numerically efficient projec-
tion tools emanating from prudent numerical techniques
like singular value decomposition (SVD) or even QR fac-
torization. While parametric methods, such as predictor-
error methods or maximum likelihood estimation tech-
niques, for estimation of state-space models exist, they
often require solving complex nonlinear and possibly non-
convex optimization problems (Rashid et al., 2017, 2019).
In contrast, the subspace identification methods typically
involve projections, which are computationally efficient to
compute and thus directly amenable for development of



computationally tractable models that can be used for
the design of predictive controllers. Once such a global
approximation is attained, it can be readily leveraged to
gain insight into the behavior of the underlying system
as the surrogate models are easily queried, optimized,
visualized, and seamlessly integrated into optimal control
strategies like model predictive control (MPC) (Allgöwer
et al., 1999; Rawlings, 2000).

The typical trajectory-tracking predictive control (TTPC)
approach is valid for operating continuous processes
around an equilibrium point. However, for batch and fed-
batch processes that transition through multiple operat-
ing modes with transient nonlinear dynamics, the TTPC
approach may be suboptimal for the objective of maxi-
mizing the yield of the high-value product. In contrast to
TTPC, formulations specifically designed for the unique
criteria of batch and fed-batch processes are required. One
such predictive control formulation tailored to the unique
circumstances of the fed-batch processes is the critical
quality attribute predictive control (CQAPC) formulation.
In the CQAPC approach, the objective of closely tracking
a reference trajectory is replaced with the objective of
maximizing a desired critical quality attribute, such as the
product yield, at the completion of the fed-batch oper-
ation. Moreover, constraints can be imposed on the state
and input variables throughout the fed-batch operation for
process safety or to maintain suitable operating conditions.
Such predictive control formulations are generally better
suited for the control of fed-batch processes employed
in the pharmaceutical industry. One such pharmaceutical
fed-batch process that is typically operating in an open-
loop manner and stands to benefit from the implemen-
tation of novel MPC formulations is the mammalian cell
fed-batch bioreactor process for culturing Chinese hamster
ovary cells to produce monoclonal antibodies. However,
the development of MPC algorithms for fed-batch mam-
malian cell bioreactor processes is challenging due to lack
of predictive, tractable mathematical models representing
the underlying bioprocess system.

Motivated by the above consideration, in this work, we
demonstrate the use of system identification to develop a
model of the fed-batch bioreactor processes and the imple-
mentation of model-based control to maximize therapeutic
product yields. The proposed algorithms are demonstrated
using a test-bed Chinese hamster ovary mammalian cell
bioreactor simulator. The test-bed bioreactor simulator
is developed from the models proposed in the literature
(Craven et al., 2014; Gan et al., 2018). The simulation
environment enables the design and evaluation of proto-
type modeling and control approaches before deploying the
algorithms in industrial settings. The system identification
approach develops state-space models able to characterize
the dynamic future evolution of the fed-batch mammalian
cell bioreactor. Besides predicting the entire dynamic evo-
lution of the bioreactor operation, the model facilitates
design of predictive control algorithms to achieve the de-
sired closed-loop performance relative to a specified ob-
jective. The capabilities of the model are leveraged to
design a controller that may, depending on the objective,
maintain desired quality attributes and improve the cost
effectiveness of the process. The proposed approach will

improve the operation of the fed-batch therapeutic protein
production process.

2. DESCRIPTION OF THE PROCESS

The fed-batch pharmaceutical process can be compactly
expressed as

ẋ (t) = f
(
x (t) , u (t)

)
+ w (t) (1)

yk = g (xk) + vk (2)

where x (t) ∈ Rn is the vector of system state variables
at time t (with n = 8), u (t) ∈ Rm is the vector of
manipulated input variables (in this case, the inlet feed
flow rate, m = 1) at time t, f : Rn × Rm → Rn is a
nonlinear function representing the dynamic behavior of
the fed-batch process, w (t) ∈ Rn is the process noise, k
is the discrete time index (i.e., xk means x (tk)), yk ∈ Rp

is the output measurements available at time instant tk,
g : Rn → Rp is the output measurement function and the
measurement noise vk ∼ N (0, Rk) with covariance Rk >
0. In this work, we use the fundamental mechanistic model
of the mammalian cell bioreactor process as a surrogate
for the industrial process. Each run of the mammalian
cell fed-batch bioreactor is initialized with state variables
drawn from a Gaussian distribution, such that x (0) ∼
N (x0,Π0), with Π0 > 0. We use historical batch runs
generated from the simulated fed-batch process to model
the process with system identification algorithms, and
the identified state-space models are subsequently used to
design predictive control algorithms.

3. DATA-DRIVEN BATCH PROCESS MODELING

In this section, we first review the subspace identification 
approach used to identify linear time-invariant state-space 
models of batch and fed-batch processes, followed by sim-
ulation results demonstrating the efficacy of the modeling 
approach.

3.1 Subspace Identification Approach for Batch and 
               Fed-Batch Processes

We briefly review the conventional subspace-based state-
space system identification approach used to determine 
the system matrices of a discrete-time state-space model
(Moonen et al., 1989; Negiz and Cinar, 1997; Negiz and
Ç inar, 1997; Ljung, 1998; Qin, 2006; Liu et al., 2013). A 
model of the following form is identified:

x̃k+1 = Ax̃k +Buk + wk (3)

yk = Cx̃k +Duk + vk (4)

where x̃ ∈ Rñ denotes the vector of state variables, y ∈ Rp

denotes the vector of output measurements, u ∈ Rm

denotes vector of manipulated inputs, and the system
matrices have appropriate dimensions. The process noise
w ∈ Rñ and the measurement noise v ∈ Rp are assumed
to be zero mean, white noise, with covariance matrices:

E

[(
wp

vq

)(
wT

p vTq

)]
=

(
Q S
ST R

)
δpq

where E [x] is the expected value of variable x and δpq is
the Kronecker delta.



The system identification approaches use Hankel matrices
constructed from process measurements and manipulated
inputs. For an arbitrary batch b in nb total batches with
nbs + 2i− 1 samples, the ‘future’ and ‘past’ output Hankel
matrices are developed as follows

Y b
f =

[
yi+1|i yi+2|i . . . yi+nb

s|i
]

(5)

Y b
p =

[
y1|i y2|i . . . ynb

s|i
]

(6)

where i is a user-specified parameter that is greater than
the observability index, or the system order ñ, and yk|i is
composed of vectors of stacked output measurements as

yk|i =
[
yTk yTk+1 . . . y

T
k+i−1

]T
The input block Hankel matrices U b

f and U b
p are defined

similarly. The individual block Hankel matrices of various
batches are assembled together as

Yf =
[
Y 1
f Y 2

f . . . Y nb

f

]
(7)

and likewise for Yp, Uf , and Up.

The repeated iterative application of the model equations
yield

Yf = ΓiXf + ΦiUf (8)

Yp = ΓiXp + ΦiUp (9)

where Xf and Xp are the future and past state sequences,
Γi is the extended observability matrix, and Φi is the lower
block Toeplitz matrix, the matrices being as

Γi =


C
CA
CA2

...
CAi−1

 Φi =


D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

...
...

...
. . .

...
CAi−2B CAi−3B CAi−4B · · · D


The realization of the unknown system states can be
obtained by computing the intersection between the past
and future input-output spaces, with the intersecting space
readily determined by the application of singular value
decomposition (Moonen et al., 1989). Once an estimate
of Xf for each of the batches is computed, a system
realization is readily obtained by solution of a least-squares
problem.

3.2 Data-Driven Modeling Results for Mammalian Cell
Bioreactor Process

The precursor to model-based predictive control algo-
rithms is the availability of a reliable and accurate model
that is able to describe the transient dynamic evolution of
the fed-batch bioreactor process. A high-fidelity model of
the batch process is developed in this work for use in pre-
dictive control formulations. The model is identified with
five output measurement variables (p = 5: glucose, glu-
tamine, lactate, ammonia, and product concentrations),
and the only manipulated input is the feed flow rate for
fed-batch operation. Using trial and error, the order of the
identified state-space model is ñ = 8. The greater order
of the identified linear state-space model helps to better
characterize the nonlinear dynamics of the underlying pro-
cesses. A total of 20 batches is used to identify the state-
space model, with each batch starting from a randomly
sampled initial condition for the state variables, and each

batch having a duration of 150 h with output variables
sampled every 15 min.

Table 1 provides the root-mean-square error (RMSE) and
mean absolute percentage error (MAPE) for predicting the
overall batch trajectory from the incipient phase of the
batch until the completion of the batch process. Fig. 1
illustrates the prediction results for a select test batch
of the mammalian cell bioreactor process. Note that the
predictions are conducted in an open-loop manner, with
feedback correction of the estimates through an observer
only during the first 10 sampling instances, after which
the outputs are predicted without correcting for the errors
through feedback. Therefore, the prediction results pre-
sented here are a true depiction of the predictive capability
of the model, as the output variables are predicted through
the entire transient evolution of the batch duration and
the prediction errors are allowed to accumulate and are
not corrected through feedback. This prediction represents
the worst-case scenario for the longest duration prediction
horizon at the incipient phase of the fed-batch mammalian
cell bioreactor process. As the batch process progresses,
the prediction of the dynamic trajectory of the process
improves owing to the shorter prediction horizons. With
the fidelity of the model established, we next discuss the
closed-loop predictive control results.

4. MODEL PREDICTIVE CONTROL OF
FED-BATCH PROCESS

In this section, we detail the mathematical formulations
of the trajectory-tracking predictive control (TTPC) and
the critical quality attribute predictive control (CQAPC)
algorithms. Then we analyze the results of the proposed
predictive controllers.

4.1 Trajectory-Tracking Predictive Control

A predictive controller for tracking reference trajectories
of mammalian cell fed-batch bioreactor is presented. The
optimal control action at the ith sampling instance is
computed by solving the following finite-horizon optimal
control problem:

min
u∈U

J =

np∑
k=i

‖ŷk − ȳk‖2Qw
+‖∆uk‖2Rv

(10)

subject to

x̂k+1 = Ax̂k +Buk, k ∈ {i, . . . , np − 1} (11)

ŷk = Cx̂k +Duk, k ∈ {i, . . . , np} (12)

x̂k = x̄k (13)

where the objective function is a summation of tracking
error and rate of change of inputs from the current
sampling instance i to the batch termination np, u ∈ Rm

denotes the vector of constrained input variables, taking
values in a nonempty convex set U ⊆ Rm. A positive
semi-definite symmetric matrix Qw is used to penalize
the deviations of the outputs from their nominal values
and a strictly positive definite symmetric matrix Rv is
used to penalize changes in the manipulated variables.
The first term in the objective function (Eq. 10) penalizes
discrepancies between the predicted output trajectories ŷ
and the reference trajectories ȳ over the prediction horizon
np and the second term is a move suppression term that



Table 1. Quantitative comparison of output prediction results for 10 test batches of the
mammalian cell bioreactor process

Glucose Glutamine Lactate Ammonia Inhibitor
Concentration Concentration Concentration Concentration Concentration

RMSE (mM) 0.41 0.037 0.64 0.034 0.40
MAPE (%) 2.38 1.00 13.8 1.01 6.21
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Fig. 1. Prediction results for a select batch of the mammalian cell bioreactor process. The closed-loop feedback period
(yellow shaded area) represents the first 10 sampling instances where feedback correction is applied to the state
estimates from a Kalman filter algorithm, after which there is no corrective action applied to the predictions and
the errors are allowed to accumulate throughout the duration of the batch.

penalizes the magnitude of input changes. The TTPC
formulation uses the identified state-space model, Eqs. 11
and 12, to predict the future evolution of the fed-batch
bioreactor. Further, x̄k in Eq. 13 provides the initialization
of the state variables at the current sampling instance. The
TTPC formulation detailed here can be used to predict the
future dynamic trajectory of the bioreactor and solve for
the optimal inputs that enable tracking a glucose set-point
trajectory profile.

4.2 Maximum Yield Predictive Control

A predictive controller for achieving a maximum end-point
critical quality attribute in the mammalian cell fed-batch
bioreactor processes is presented. The optimal control
action at the ith sampling instance is computed by solving
the following finite-horizon optimal control problem:

min
u∈U

J = ŷqnp
(14)

subject to

x̂k+1 = Ax̂k +Buk, k ∈ {i, . . . , np − 1} (15)

ŷk = Cx̂k +Duk, k ∈ {i, . . . , np} (16)

ŷqnp
= βx̂np

(17)

x̂k = x̄k (18)

where u ∈ Rm denotes the vector of constrained input
variables, taking values in a nonempty convex set U ⊆ Rm.
The term ŷqnp

is the prediction of the end-point critical
quality attributes as a linear combination of the state
variables at the final sampling instant np, as shown in
Eq. 17. The objective function, Eq. 14, maximizes the pre-
dicted end-point critical quality attributes. The predictive
controller detailed here can be used to predict the future
dynamic trajectory of the bioreactor by employing the
identified state-space models, Eqs. 15 and 16, and solve
for the optimal inputs that enable maximization of the
yield of the bioreactor.

4.3 Predictive Control Results

In this subsection, we compare the proposed MPC al-
gorithms with the proportional-integral-derivative (PID)
control algorithm and the open-loop operation with bolus
inputs (OLBI) where a amount of feed is occasionally
added to the bioreactor, typically once per day.



TTPC Results A trajectory-tracking predictive con-
troller is implemented for the closed-loop control of the
fed-batch bioreactor process. The predictive controller
tracks the glucose reference set-point value by manipu-
lating the feed flow rate into the bioreactor. Compared
to the conventional proportional-integral (PI) control al-
gorithm, the TTPC algorithm better tracks the reference
glucose trajectory. A total of 10 closed-loop test batches
are simulated with disturbances in the feed composition,
specifically including random variations in the glucose and
glutamine concentrations of the feed, to demonstrate the
disturbance rejection ability of the controllers. We also
compare the closed-loop control algorithms with the open-
loop operating mode where bolus inputs (OBLI) are added
to the fed-batch bioreactor with a 24-hour sampling time,
with the quantity of the daily bolus feed calculated as
the amount that yields a bioreactor glucose concentration
of 20 mM. The average integral of squared error of 10
testing OLBI is found to be 4.83× 103, while the average
integral of squared error of the 10 closed-loop batches for
the TTPC algorithm is found to be 1.85× 103, compared
with 1.95 × 103 for the conventional PI controller. The
TTPC has , an improvement of 61.7% and 5.1% relative to
the OLBI approach and PI control algorithm, respectively.
The closed-loop performance of the TTPC and conven-
tional PI control algorithms are is shown in Fig. 2 for a
select closed-loop batch of the mammalian cell bioreac-
tor. The glucose concentration reference set-point in the
bioreactor is 11 mM in the closed-loop simulation of the
TTPC and PI control algorithms to ensure that sufficient
glucose is present for the cell growth and proliferation. It
is readily observed that the TTPC algorithm tracks the
reference set-point closer than the PI control algorithm,
resulting in better disturbance rejection performance and
a lower tracking error.

CQAPC Results A predictive controller with the objec-
tive of maximizing the product yield at the termination
of the run is implemented for the closed-loop control of
the fed-batch bioreactor process. The CQAPC predicts
and maximizes the product yield at the end of the run
and mitigates disturbances that reduce the final product
concentration. The manipulated variable in the CQAPC
is the volumetric feed flow rate into the bioreactor. Com-
pared to the TTPC algorithm, the CQAPC algorithm
designed to maximize the bioreactor product yield results
in 3.9% higher product concentration. The CQAPC in-
creases the feed flow rate, thus increasing the glucose and
glutamine available for cell proliferation and therapeutic
protein production. A total of 10 closed-loop test batches
are simulated with disturbances in the feed composition,
specifically random variations in the feed composition, to
demonstrate the disturbance rejection ability of the con-
trollers. The average product concentration of 10 testing
closed-loop batches for the CQAPC algorithm is found
to be 99.7 mM, compared to 95.7 mM for the TTPC
algorithm. The closed-loop performance of the TTPC and
CQAPC algorithms is shown in Fig. 2 for a select closed-
loop batch of the mammalian cell bioreactor. The OLBI
operating mode has poor product yield performance due
to lack of feedback and predictive control of the fed-
batch process, with 96.1 mM product concentration at
the completion of the run. The OLBI operating mode is

not suitable for rejecting disturbances and maximizing the
product concentration in the fed-batch process.

The product yields across all 10 closed-loop test batches
are shown in Fig. 3. It is readily observed that the CQAPC
increases the product concentration, resulting in distur-
bance rejection performance, while the therapeutic protein
product yield is maximized. Although the improvement in
the therapeutic protein product concentrations is modest,
it can have substantial effects on downstream processing
(purification and recovery) of the final product. It is note-
worthy that the proposed model-based predictive control
algorithms are not dependent on a fixed duration of the
fed-batch run, and the model and control algorithms do
not need to be modified for fed-batch runs of varying
durations. Therefore, CQAPC algorithm can be readily
implemented for fed-batch runs of varying durations, and
the CQAPC will maximize the product concentration at
the end of the batch regardless of the run duration.

5. CONCLUSION

The predictive control of the mammalian cell bioreactor
process is investigated through the use of a simulation test-
bed platform. A system identification approach is used to
develop computationally tractable state-space models that
are leveraged to design MPC algorithms. A trajectory-
tracking predictive control algorithm is formulated and
shown to have better disturbance rejection abilities com-
pared to the conventional proportional-integral control
algorithm. A critical quality attribute predictive control
approach is developed to maximize the product yield at the
completion of the bioreactor run. The simulation platform
will be a useful tool for the development of the Industry
4.0 software tools and algorithms, facilitating advanced
manufacturing in the pharmaceutical industry.
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Fig. 2. Comparison of conventional OLBI against the closed-loop control results of TTPC and CQAPC algorithms for
a select test run of the mammalian cell fed-batch bioreactor process.
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Fig. 3. Comparison of conventional OLBI, TTPC and
CQAPC algorithms through product yields at com-
pletion of mammalian cell fed-batch bioreactor runs.
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