REFERENCES De Nicolao, G., Magni, L., Dalla Man, C., and Cobelli, C. (2011). Modeling and control of diabetes: Towards the artificial pancreas. IFAC Proceedings Volumes, 44(1), 7092-7101. Eren-Oruklu, M., Cinar, A., Quinn, L., and Smith, D. (2009). Adaptive control strategy for regulation of blood glucose levels in patients with type 1 diabetes. Journal of process control, 19(8), 1333-1346. Flores-Cerrillo, J. and MacGregor, J.F. (2005). Latent variable MPC for trajectory tracking in batch processes. Journal of process control, 15(6), 651-663. Geladi, P. and Kowalski, B.R. (1986). Partial least-squares regression: a tutorial. Analytica chimica acta, 185, 1-17. Golshan, M., MacGregor, J.F., Bruwer, M.J., and Mhaskar, P. (2010). Latent Variable Model Predictive Control (LV-MPC) for trajectory tracking in batch pro- cesses. Journal of Process Control, 20(4), 538-550. Hajizadeh, I., Rashid, M., and Cinar, A. (2019a). Plasma- insulin-cognizant adaptive model predictive control for artificial pancreas systems. Journal of Process Control, 77, 97-113. Hajizadeh, I., Rashid, M., Samadi, S., Sevil, M., Hobbs, N., Brandt, R., and Cinar, A. (2019b). Adaptive personalized multivariable artificial pancreas using plasma insulin estimates. Journal of Process Control, 80, 26-40. Hajizadeh, I., Rashid, M., Turksoy, K., Samadi, S., Feng, J., Frantz, N., Sevil, M., Cengiz, E., and Cinar, A. (2017). Plasma insulin estimation in people with type 1 diabetes mellitus. Industrial & Engineering Chemistry Research, 56(35), 9846-9857. Hovorka, R., Canonico, V., Chassin, L.J., Haueter, U., Massi-Benedetti, M., Federici, M.O., Pieber, T.R., Schaller, H.C., Schaupp, L., Vering, T., et al. (2004). Nonlinear model predictive control of glucose concen- tration in subjects with type 1 diabetes. Physiological measurement, 25(4), 905-920. Juricek, B.C., Seborg, D.E., and Larimore, W.E. (2005). Process control applications of subspace and regression- based identification and monitoring methods. In Pro- ceedings of the 2005, American Control Conference, 2005., 2341-2346. IEEE. MacGregor, J. and Cinar, A. (2012). Monitoring, fault diagnosis, fault-tolerant control and optimization: Data driven methods. Computers & Chemical Engineering, 47, 111-120. Man, C.D., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., and Cobelli, C. (2014). The UVA/PADOVA type 1 diabetes simulator: new features. Journal of diabetes science and technology, 8(1), 26-34. Negiz, A. and C_inar, A. (1997). PLS, balanced, and canonical variate realization techniques for identifying VARMA models in state space. Chemometrics and intelligent laboratory systems, 38(2), 209-221. Negiz, A. and C_inar, A. (1997). Statistical monitoring of multivariable dynamic processes with state-space models. AIChE Journal, 43(8), 2002-2020. Nelson, P.R., MacGregor, J.F., and Taylor, P.A. (2006). The impact of missing measurements on PCA and PLS prediction and monitoring applications. Chemometrics and intelligent laboratory systems, 80(1), 1{12. Nelson, P.R., Taylor, P.A., and MacGregor, J.F. (1996). Missing data methods in PCA and PLS: Score calcula- tions with incomplete observations. Chemometrics and intelligent laboratory systems, 35(1), 45-65. Soru, P., De Nicolao, G., Toffanin, C., Dalla Man, C., Cobelli, C., Magni, L., Consortium, A.H., et al. (2012). MPC based artificial pancreas: strategies for individu- alization and meal compensation. Annual Reviews in Control, 36(1), 118-128. Turksoy, K., Quinn, L.T., Littlejohn, E., and Cinar, A. (2014). Artificial pancreas systems: An integrated multi- variable adaptive approach. IFAC Proceedings Volumes, 47(3), 249-254. Turksoy, K., Quinn, L., Littlejohn, E., and Cinar, A. (2013). Multivariable adaptive identification and control for artificial pancreas systems. IEEE Transactions on Biomedical Engineering, 61(3), 883-891. Vinzi, V.E., Chin, W.W., Henseler, J., Wang, H., et al. (2010). Handbook of partial least squares. Springer, Heidelberg. Yu, X., Turksoy, K., Rashid, M., Feng, J., Hobbs, N., Hajizadeh, I., Samadi, S., Sevil, M., Lazaro, C., Mal-oney, Z., et al. (2018). Model-fusion-based online glucose concentration predictions in people with type 1 diabetes. Control engineering practice, 71, 129-141. Zhao, C., Dassau, E., Jovanovi_c, L., Zisser, H.C., Doyle III, F.J., and Seborg, D.E. (2012). Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus. Journal of diabetes science and technology, 6(3), 617-633.