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Abstract: A model predictive control (MPC) system based on latent variables (LV) model 
generated by using partial least squares (PLS) method is developed. The difference in the 
performance of MPCs that use recursively updated LV models based on autoregressive time 
series modeling (with exogenous inputs - ARX) and PLS is studied. The effect of signal noise on 
MPC performance is also investigated for both types of models. MPC performance is evaluated 
by regulating the blood glucose concentration (BGC) of people with Type 1 diabetes mellitus 
(T1DM) in simulation studies. Signal noise in glucose concentration sensor data, delays caused 
by insulin absorption and action, and disturbances caused by consumption of meals make the 
regulation of BGC difficult. The proposed controller is evaluated with 10 in-silico adult subjects 
of the UVa/Padova simulator with different levels of signal noise. The results illustrate the 
effectiveness of the MPC based on LV model. The average time for BGC in the safe range 
(70-180 mg/dL) for the LV-based MPC is 83.23% compared to 79.68% for the MPC based on 
ARX model when intravenous BGC values are used. The average time in safe range decreases 
to 76.04% and 71.92%, respectively, when using the generic CGM sensor of the simulator. It is 
reduced further to 71.93% and 67.20% when additional noise is added to CGM readings.

Keywords: Model predictive control, latent variables model, measurement noise, type 1 
diabetes, artificial pancreas system.

1. INTRODUCTION

Model predictive control (MPC) has become the preferred
control system for most processes with nonlinearities and
time-varying parameters. The models used in MPC to reg-
ulate such systems must provide reliable predictions of sys-
tem variables in response to setpoint changes and distur-
bances. Often, the measured variables used for predictions
would have signal noise, missing values and outliers. Hence
models that are robust to such challenges in data must be
developed. One approach for developing such models relies
on latent variables computed by partial least squares (also
called projection to latent structures) (PLS) techniques.
PLS was first used in economic modeling. Then, it revolu-
tionized chemometricts (Geladi and Kowalski, 1986; Vinzi
et al., 2010). The use of principal components analysis
(PCA) and PLS in chemical process industries started
by the development of multivariable process monitoring
and fault diagnosis (Negiz and Çlinar, 1997; MacGregor
and Cinar, 2012). System identification based on latent
variables progressed in the systems engineering community
as well (Juricek et al., 2005; Negiz and Çinar, 1997).

Type 1 diabetes mellitus (T1DM) is a chronic disease
caused by the autoimmune destruction of beta cells in
pancreas, resulting in the inability of pancreas to produce
insulin which regulates the transport and utilization of

blood glucose (Hajizadeh et al., 2019b). Thus, exogenous
insulin administrated by multiple daily injections or in-
fusion by an insulin pump is necessary to maintain the
blood glucose concentration (BGC) of people with T1DM
within a safe range (70-180 mg/dL) (Yu et al., 2018). The
closed-loop control system for automated insulin delivery,
known as artificial pancreas (AP) system, is usually con-
sists of a continuous glucose monitoring (CGM) sensor
which measures the glucose to infer BGC, an insulin pump
that delivers insulin to the subcutaneous tissue of the
patient, and a feedback control algorithm that receives
the CGM data to compute the optimal insulin amount
to be infused by manipulating the infusion rate of the
pump (Turksoy et al., 2013). However, delays caused by
insulin absorption and action, and measurements of BGC,
noise in CGM readings, and disturbances caused by meal
consumption and exercise make the determination of the
optimal infusion rate of insulin difficult, resulting in swings
in BGC that may cause hypoglycemia or hyperglycemia.

Model predictive control (MPC) in AP systems aims to
compute the optimal insulin infusion rate that minimize
the deviation of glucose concentration values predicted by
a predictive model and the desired glucose concentration
by using as little insulin as possible. It is considered
as a promising control method for managing BGC in
both in-silico and clinical studies (Hovorka et al., 2004;



Soru et al., 2012). MPC based on physiological models
(Hovorka et al., 2004; De Nicolao et al., 2011) where
the glucose dynamics are described by a physiological
model are proposed. However, it is hard to identify the
model parameters and update the parameters online to
capture the variations in BGC dynamics. MPC based
on data-driven models use an empirical model where the
model parameters can be identified recursively (Eren-
Oruklu et al., 2009; Turksoy et al., 2014, 2013) to describe
BGC dynamics accurately at any time. In particular,
autoregressive (AR) models (Eren-Oruklu et al., 2009),
and AR models with exogenous inputs (ARX) (Turksoy
et al., 2014, 2013) are used to develop personalized BGC
prediction model. The model can capture the glucose
dynamics accurately by updating the model parameters
recursively. However, the identified model parameters are
influenced by the quality of CGM data. The prediction
accuracy deteriorates with the presence of sensor noise.

An MPC based on latent variable (LV) model is proposed
to handle measurement noise. Statistical methods based
on LVs, such PLS and PCA, have been proven to be
powerful tools for data analysis, modeling, and prediction
(MacGregor and Cinar, 2012; Zhao et al., 2012). In the
empirical models for AP, the process variables, including
CGM readings, insulin infusion rate and meal consump-
tion, are treated as the inputs of the model, and the output
of the model is the future BGC values. To compute the
optimal insulin infusion rate, the identified model is used
repeatedly over the prediction horizon, which increases the
computational effort.

An alternative approach is to control the key variables
(i.e., the BGC) while manipulating the inputs, once the
key variables during the manipulation progress is well-
controlled, the quality after the manipulation can be guar-
anteed (Flores-Cerrillo and MacGregor, 2005; Golshan
et al., 2010). In this work, a MPC aiming at controlling the
BGC during the infusion of insulin is designed for people
with T1DM. The LV-based MPC is consist of two key
steps. First, a PLS model is developed to predict the glu-
cose concentrations (the model output) from available his-
torical CGM readings and variables including estimation
of plasma insulin concentration (PIC) and gut absorption
rate generated from CGM readings and insulin infusion
rates (Hajizadeh et al., 2017) (the model inputs). In the
second step, the MPC is formulated based on the PLS
model to compute the optimal insulin infusion rate where
constrains of PIC and insulin infusion rate are integrated.

In this paper, the LV-based MPC is evaluated with 10
in-silico adult subjects from the UVa/Padova T1DM sim-
ulator which is accepted by FDA (Man et al., 2014) with
different levels of measurement noise and compared to
the performance of a MPC based on ARX model. The
average time in the safe range (70-180 mg/dL) and in hy-
poglycemia and hyperglycemia ranges for LV-based MPC
and ARX based MPC are compared and the influence of
measurement noise on these metrics are reported.

The rest of this paper is structured as follows. The LV-
based model is described in Section 2. The insulin ab-
sorption model is integrated to the LV-based model and
the MPC based on LV is described in Section 3. The
performance of the AP with the proposed controller is

reported and discussed in Section 4. Section 5 provides
the conclusions.

2. LATENT VARIABLE MODEL

2.1 Partial Least Squares

The LV-based models are widely used in data analysis,
monitoring, modeling, and prediction (Negiz and Çinar,
1997; MacGregor and Cinar, 2012). A variety of LV-based
methods have been developed, with the main difference be-
ing how the LVs are generated. PLS (Geladi and Kowalski,
1986; Vinzi et al., 2010) is a popular LV-based regression
method. For the normalized input matrix X ∈ Rn×m and
output matrix Y ∈ Rn×l which is also normalized, where n
is the number of samples, m and l are the number of input
variables and output variables, respectively. The aim of
the PLS method is to find the latent structure between
the input matrix X and output matrix Y by maximizing
the covariance of LV of the input matrix and the output
matrix. Thus, the first LV t1 can be expressed as

t1 = Xw1 (1)

where w1 is the first weight vector that maximizes the
objective function

arg min
w1

(
w1

TXTY Y TXw1

)
s.t. w1

Tw1 = 1
(2)

where w1 is the eigenvector that corresponds to the largest
eigenvalue of matrix (XTY Y TX). The second LV t2 can
be found by repeating the above process after deflating X
and Y by t1

p1
T = (t1

T t1)
−1
t1

TX
X = X − t1p1T

q1 = (t1
T t1)

−1
t1

TY
Y = Y − t1q1T

(3)

The remaining LVs can be found by repeating the above
process, and is usually terminated when enough LVs are
extracted to describe the data accurately. The number of
LVs is determined by cross-validation. Suppose that a LVs
are sufficient to describe the variations in the original input
matrix X and output matrix Y , the original data matrices
can be expressed as

X = TPT + E
Y = TQT + F

(4)

where T = [t1, t2, . . . , ta] = [τ1, τ2, . . . , τn]
T

is the LV (score)
matrix where ti is the ith LV and τj

T is the first a
scores of the jth sample. P = [p1, p2, . . . , pa] is the loading
matrix for the input matrix X and Q = [q1, q2, . . . , qa] is
the loading matrix for the output matrix Y . E and F are
the residuals of the input matrix X and output matrix Y ,
respectively.

2.2 Known Data Regression

In this work, we consider a situation where the variables in
the output matrix Y is part of variables in the input matrix
X. Thus, for a new sample z, only part of the variables can



Fig. 1. Illustration of the partition of data matrices

be observed, defined as z∗, and the variables that are also
presented in the output is not observable, defined as z#,
it is natural to arrange the variables in the new sample as

zT = [z∗T , z#
T

] (5)

Accordingly, the input data matrix X and loading matrix
P can be partitioned into two parts as shown in Fig. 1

X = [X∗, X#]

PT = [P ∗T , P#T
]

(6)

If the known part of the new sample is used to estimate the
score vector τT with a given PLS model (4), the following
relation can be obtained (Nelson et al., 1996, 2006)

τT = z∗T Θ (7)

where Θ = (X∗TX∗)
−1
X∗TT . The corresponding output

can be estimated as

ŷT = τTQT (8)

3. MPC BASED ON LV MODEL

3.1 Structure of data

In order to apply the LV-based modeling technique, the
input and output data sets must be organized in an ap-
propriate manner. In previous work in our group, plasma
insulin concentration (PIC) and gut glucose absorption
rate are estimated using unscented Kalman filter and have
been proven helpful in glucose prediction and designing
MPC for the AP (Hajizadeh et al., 2017, 2019b). Thus, the
estimation of PIC and gut glucose absorption rate are used
as exogenous inputs of the PLS model. The nth sample xn
in the input matrix X is arranged as

xn
T = [uG

T (n), uI
T (n), uM

T (n)]

where uG
T (n) = [g(n − L + 1), . . . , g(n)] contains L

measurements of BGC g, uI
T (n) = [I(n − dI − L +

1), . . . , I(n−dI)] and uM
T (n) = [M(n−L+1), . . . ,M(n)]

are consist of estimation of PIC I with the order of
delay dI which is set to be 4 in this work accounting for
physiological delay and gut glucose absorption rate M ,
respectively.

Future BGC values are usually used as the model output,
and a MPC based on this kind of models computes the

optimal operations by minimizing the deviation of future
BGCs predicted by the model from the desired value after
the insulin is delivered. However, in this work, we focus on
BGC along with the infusion of insulin because the BGC
will be in range if the BGC is well controlled while the
insulin is infused. Thus, the nth output yn in the output
matrix Y is

yn
T = [g(n− l + 1), . . . , g(n)]

where l(l < L) is the number of BGC values predicted,
known as prediction horizon.

3.2 Integrating insulin absorption model with LV model

In the AP system, insulin infusion rate is the manipulated
variable. Hence, it is necessary to incorporate the insulin
absorption model in the LV-based model because the es-
timates of PIC are used as inputs in the LV-based model.
In this work, the model that describes the absorption of
subcutaneously administrated insulin proposed by Hov-
orka et al. (2004) is chosen for computing future PIC. The
discrete insulin absorption model is

S1,k+1 = S1,k + Ts

(
ui,k −

S1,k

tmax

)
S2,k+2 = S2,k+1 + Ts

(
S1,k+1

tmax
− S2,k+1

tmax

)
Ik+3 = Ik+2 + Ts

(
S2,k+2

tmaxVI
− keIk+2

) (9)

where S1 and S2 are the two compartments representing
absorption of subcutaneously administered insulin and ui
represents the insulin infusion rate (including basal and
bolus insulin). I is the PIC with distribution volume VI .
Ts and tmax are the sampling time and time to maximum
of absorption of administered insulin, respectively. Note
that Ik+3 can be calculated if ui,k is known where the
delay between insulin infusion and PIC can be observed.
Furthermore, there is a delay dI between CGM and
PIC. Thus to predict l future CGM values, only (l −
(dI + 2)) future insulin infusion rates and PIC values are
needed. The estimation of future (l − (dI + 2)) insulin

concentrations Î can be expressed as

Î = A1u+ C1 (10)

whereA1 is the coefficient matrix, C1 is the constant vector
and u represents the (l − (dI + 2)) future insulin infu-
sion rates. By scaling the coefficient matrix and constant
vector with means and standard deviations of PIC, the
normalized PIC În which is part of the model input can
be calculated:

În = A1u+ C1 (11)

The score vector τ̂ of the PLS model estimated from the
incomplete input can be calculated by

τ̂ = Θ1
T z1 + Θ2

T În (12)

where z1 contains all the known variables in the new
input sample, Θ1 and Θ2 are the coefficient matrices that
correspond to the known variables and the normalized



future PIC, respectively. And the normalized output ŷn
given in (8) can be reformulated as

ŷn = Qτ̂
= QΘ2

TA1u+Q(Θ1
T z1 + Θ2

TC1)
= A2u+ C2

(13)

The CGMs ŷ while insulin is infused can be estimated
as following after integrating the means and standard
deviations with the coefficient matrix and constant vector

ŷ = A2u+ C2 (14)

3.3 MPC based on LV model

MPC is widely adopted in designing AP systems due to its
ability to incorporate constraints while making a control
decision. The purpose of a MPC in the AP system is to
compute the optimal insulin infusion rate by minimizing
differences between the predicted BGC and the target
BGCs under some constraints. From previous works in
our group (Hajizadeh et al., 2019b,a), the PIC has been
proven important for BGC management. Thus, in this
work, the same objective function and constraints for PIC
are adopted (Hajizadeh et al., 2019b).

arg min
u

(ŷ − yp)
T
Qy(ŷ − yp) + Id

TQpicId + uTQuu

s.t. Î = A1u+ C1

ŷ = A2u+ C2

Id = Ip − Î
Imin ≤ Î ≤ Imax

umin ≤ u ≤ umax

(15)

where Qy, Qpic, and Qu are the weight matrices. Specif-
ically, Qy, generated from the glycemic risk matrix, is
dynamically tuned according to CGM for regulate glu-
cose concentration effectively and Qu, calculated from the
plasma insulin risk and according to the estimation of PIC,
aiming at make the controller more aggressive when the
PIC is low and less aggressive if there are enough insulin
present in the bloodstream. yp is the setpoint for CGM and
is set to be 110 mg/dL. Ip, Imin, and Imax are the desired
and constraint boundaries for PIC which are specified for
each individual. The glycemic risk index, plasma insulin
risk index, and desired and boundaries for PIC are shown
in Fig. 2 (Hajizadeh et al., 2019b). umin and umax are the
constraints on future insulin infusion rates and are zero
and 6 U/min, respectively.

The proposed MPC based on LV model updated online is
shown in Fig. 3. At each sampling time, the optimal insulin
infusion rate is calculated by solving the constrained op-
timization problem that minimizes the objective function
(15) and the first insulin infusion rate of the solution is
sent to the insulin pump. At the next sampling time, the
PIC and gut glucose absorption rate are estimated, the
LV-based model is updated with the new observation and
estimations. The optimal insulin infusion rate is recom-
puted by solving the optimization problem with updated
constraints and models. The process is repeated at each
sampling time.

For comparison, the historical BGC information, estima-
tion of PIC and gut glucose absorption rate are used as
the input of ARX model and the output of the model is
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Fig. 2. Illustration of PIC constraints

Fig. 3. Flow chart of the proposed LV-based MPC for
people with T1DM

the future BGC values. The ARX model where the model
parameters are updated using recursive least square (RLS)
algorithm is then integrated in the objective function (15)
to give predictions of future BGC values.

4. RESULTS AND DISCUSSION

The performance of the proposed MPC based on LV model
is tested on the in-silico adult cohort of the UVa/Padova
metabolic simulator (Man et al., 2014) and the scenario
is listed in Table 1 where the first day is an open-loop
experiment for initialization and the following five days
are closed-loop operation for testing the proposed MPC
algorithm. The results are compared with the MPC based
on ARX model. In the simulation study, the number of
variables in the input samples L is 36 for LV model to
achieve a good prediction, while for the ARX model, the
same variables are used as the input where L = 24 and
the next CGM in the future is used as the model output,



and the insulin absorption model is incorporated as well.
The prediction horizon l in both controllers are set to be
12 (1 hour) for short term glucose regularization. The
influence of three different levels of measurement noise
is studied. For the noise free case (noise level 0), CGM
measurements from IV sensor of the simulator are used in
the modeling process. For the second case (noise level 1),
the data from generic CGM of the UVa/Padova simulator
are used in the modeling process. In the third case (noise
level 2), Gaussian noise with zero mean and standard
deviation of 1 mg/dL is added to the generic CGM
readings. The performance of the controllers is evaluated
by the percentage of time of the BGC in different ranges.

Table 1. Meal scenarios for simulation study

Day 1 and 4 Day 2 and 5 Day 3 and 6
Meal Carbs Time Carbs Time Carbs Time

Breakfast 48 g 09:45 55 g 09:10 40 g 09:00
Lunch 47 g 13:30 70 g 13:45 68 g 14:00
Dinner 75 g 17:45 65 g 18:00 75 g 18:20
Snack 31 g 21:30 20 g 22:00 25 g 22:30

Table 2 summarizes the performance of the MPC based
on LV-based model and ARX model. The average time for
BGC in the safe range (70-180 mg/dL) for the LV-based
MPC is 83.23% compared to 79.68% for the MPC based on
ARX model where BGC values are measured by the noise
free IV sensor. The average time in safe range decreases by
7.19% to 76.04% for LV-based MPC, while average time in
safe range decreases by 7.77% to 71.92% for MPC based
on ARX model when using the generic CGM sensor of the
simulator. When additional noise is added to the generic
CGM readings, the average time in the safe range decreases
further for both controllers, but the decrease for LV-
based MPC controller is smaller. The results indicate that
the proposed MPC method based on LV model is more
robust when there is noise in CGM readings. Since there is
no rescue carbohydrates given throughout the simulation
study, few subjects experience hypoglycemia, however,
none of them experience severe hypoglycemia (BGC<55
mg/dL). As the level of measurement noise increases, the
control performance of both controllers deteriorates as
expected, however, the BGC is more tightly controlled for
LV-based MPC. Specifically, the minimal value of the BGC
(Table 2) is larger for LV-based MPC compared to ARX
based MPC, indicating that the proposed MPC method
has the ability to provide more reliable control of the
BGC to prevent hypoglycemia without much change in
maximum BGC when sensor noise is present.

The comparison of BGC variation under LV-based MPC
and ARX-based MPC (Fig. 4) indicates that the peaks of
BGC after meal is smaller and the BGC is more stable for
the LV-based MPC.

Fig. 5 shows the mean and standard deviation of BGC for
different levels of noise. The controller performance is more
reliable as the CGM noise levels increase illustrating the
effectiveness of the proposed LV-based MPC in controlling
BGC when sensor noise is present.

5. CONCLUSIONS

The LV-based MPC is able to provide reliable management
of the blood glucose levels for people with T1DM when

realistic signal noise exists. According to the simulation
results, the controller can avoid the occurrence of hypo-
glycemia events and manage the BGC after consumption
of meals more effectively. In future work this LV-based
controller will be extended to multivariable MPC.
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