REFERENCES Badeau, R., Boyer, R., and David, B. (2002). Eds parametric modeling and tracking of audio signals. Bodson, M. and Douglas, S.C. (1997). Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequency. Automatica, 33(12), 2213Ð2221. Chen, B., Li, P., Pin, G., Fedele, G., and Parisini, T. (2019). Finite-time estimation of multiple exponentially-damped sinusoidal signals: A kernel-based approach. Automatica, 106, 1Ð7. Francis, B.A. and Wonham, W.M. (1976). The internal model principle of control theory. Automatica, 12(5), 457Ð465. Hsu, L., Ortega, R., and Damm, G. (1999). A globally convergent frequency estimator. IEEE Transactions on Automatic Control, 44(4), 698Ð713. Hua, Y. and Sarkar, T.K. (1990). Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(5), 814Ð824. doi:10.1109/29.56027. Kay, S.M. and Marple, S.L. (1981). Spectrum analysisÑa modern perspective. Proceedings of the IEEE, 69(11), 1380Ð1419. Khalil, H.K. (2002). Nonlinear systems. Prentice hall Upper Saddle River, NJ, 3 edition. Kumaresan, R. and Tufts, D. (1982). Estimating the parameters of exponentially damped sinusoids and polezero modeling in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 30(6), 833Ð840. doi: 10.1109/TASSP.1982.1163974. Lu, J. and Brown, L. (2010). Internal model principlebased control of exponentially damped sinusoids. International Journal of Adaptive Control and Signal Processing, 24(3), 219Ð232. Lu, J. and Brown, L.J. (2008). Identification of exponentially damped sinusoidal signals. IFAC Proceedings Volumes, 41(2), 5089Ð5094. Marino, R. and Tomei, P. (2002). Global estimation of n unknown frequencies. IEEE Transactions on Automatic Control, 47(8), 1324Ð1328. doi: 10.1109/TAC.2002.800761. Mboup, M. (2009). Parameter estimation for signals described by di?erential equations. Applicable Analysis, 88(1), 29Ð52. Mojiri, M., Karimi-Ghartemani, M., and Bakhshai, A. (2007). Time-domain signal analysis using adaptive notch filter. IEEE Transactions on Signal Processing, 55(1), 85Ð93. doi:10.1109/TSP.2006.885686. Obregon-Pulido, G., Castillo-Toledo, B., and Loukianov, A. (2002). A globally convergent estimator for nfrequencies. IEEE Transactions on Automatic Control, 47(5), 857Ð863. Osborne, M.R. and Smyth, G.K. (1995). A modified prony algorithm for exponential function fitting. SIAM Journal on Scientific Computing, 16(1), 119Ð138. Pisarenko, V.F. (1973). The retrieval of harmonics from a covariance function. Geophysical Journal International, 33(3), 347Ð366. Regalia, P.A. (1991). An improved lattice-based adaptive iir notch filter. IEEE transactions on signal processing, 39(9), 2124Ð2128. Riedle, B. and Kokotovic, P. (1986). Integral manifolds of slow adaptation. IEEE Transactions on Automatic Control, 31(4), 316Ð324. Roy, R. and Kailath, T. (1989). Esprit-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on acoustics, speech, and signal processing, 37(7), 984Ð995. Sastry, S. and Bodson, M. (1989). Adaptive control: stability, convergence and robustness. Englewood Cli?s, NJ: Prentice-Hall. Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276Ð280. doi: 10.1109/TAP.1986.1143830. Stoica, P. (1993). List of references on spectral line analysis. Signal Processing, 31(3), 329Ð340. Van Overschee, P. and De Moor, B. (1994). N4sid: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica, 30(1), 75Ð93. Vediakova, A., Vedyakov, A., Bobtsov, A., and Pyrkin, A. (2020). Drem-based parametric estimation of biasa? ected damped sinusoidal signals. In 2020 European Control Conference (ECC), 214Ð219. IEEE. Xia, X. (2002). Global frequency estimation using adaptive identifiers. IEEE Transactions on Automatic Control, 47(7), 1188Ð1193. doi:10.1109/TAC.2002.800670