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Abstract: In this paper, we introduce a continuous-time adaptive algorithm for online estima-
tion of the parameters of exponentially damped sinusoidal signals. The proposed algorithm can
also reconstruct the original signal from its corrupted measurements in real-time and without
extra computational cost. For sufficiently slow adaptation gains, we establish the local stability
of the filter and local exponential convergence of the estimated parameters to their true values.
We also obtain a linear approximation of the adaptation laws which can be utilized for tuning
the adaptation gains. Simulation studies are also provided to corroborate our claims.

1. INTRODUCTION

Parameter estimation of the harmonic signals is a funda-
mental problem in signal processing and systems theory.
It has a wide range of applications in various branches of
science and engineering, for instance in resolving the loca-
tion of long-distance stars by radio telescopes, geophysical
explorations, underwater surveillance, sonar, radar, com-
munications, speech analysis, power systems, active noise
and vibration control, process control, and many other
fields. In the signal processing literature, there are several
well-established algorithms to estimate the frequency of
a sinusoid such as Pisarenko’s method, Pisarenko (1973),
multiple signal classification (MUSIC), Schmidt (1986),
and estimation of signal parameters via rotational invari-
ance technique (ESPRIT), Roy and Kailath (1989). For a
detailed review, see the classical paper, Kay and Marple
(1981), or for a comprehensive list of basic references, see
Stoica (1993).

From a control perspective, the online estimation of the
parameters of such signals is crucially important. The
challenge of the online frequency estimation problem stems
from the nonlinear dependency of the measurable signal
on the unknown frequency. Therefore, designing globally
convergent frequency estimators is not a straightforward
task. In discrete-time, the nonlinear parameterization ob-
stacle does not arise. However, the estimated frequency
critically depends on the sampling time, particularly for
the frequencies close to 0 or 7, Hsu et al. (1999). Hence,
the global convergence cannot be acheived in the discrete-
time case. Consequently, over the past two decades, several
globally convergent continuous-time algorithms were pro-
posed for the frequency estimation of sinusoidal signals—
e.g., see Hsu et al. (1999), Marino and Tomei (2002), Xia
(2002), Obregon-Pulido et al. (2002).

In this paper, we are interested in the problem of
continuous-time online estimation of the parameters of
exponentially damped sinusoidal signals. This contains
a broader class of signals, including the harmonic sig-
nals. The stationarity of the measured signal is an un-

derlying assumption in most of the existing algorithms
for online frequency estimation. In contrast to harmonic
signals, the exponentially damped sinusoidal signals are
non-stationary and vanishing. Therefore, the parameter
estimation of such signals is relatively more challenging.
As this broader class of signals capture the impulse re-
sponse of causal linear time-invariant systems, it is ev-
ident that estimation of the parameters of such signals
plays an important role in many practical applications.
For instance, in speech processing, each pitch frame of the
speech waveform for vowel sounds can be assumed to be
a sum of exponentially damped signals. In radar target
identification, the estimated parameters of the exponential
model are used to discriminate different targets. In power
systems, the exponentially damped sinusoidal signals arise
as a result of interaction among different components.
Hence, fast and accurate identification of such oscillations
is critical in detecting any faults or equipment malfunc-
tions.

The traditional non-iterative algorithms for estimating
the parameters of exponentially damped sinusoidal signals
includes, Prony’s algorithm and its variations, Kumaresan
and Tufts (1982), Osborne and Smyth (1995), the matrix-
pencil methods, Hua and Sarkar (1990), Badeau et al.
(2002), and subspace identification methods, Van Over-
schee and De Moor (1994). These techniques depend heav-
ily on solving linear algebraic equations, eigenvalue prob-
lems, and singular-value decomposition. Another impor-
tant class of algorithms are algebraic identification meth-
ods, Mboup (2009). Several online adaptive algorithms
were also reported. For instance, Lu and Brown (2008),
Lu and Brown (2010), used the internal-model principle to
develop online discrete-time and continuous-time adaptive
algorithms. In a recent work, Chen et al. (2019) employed
Volterra integral operators with novel kernel-functions to
develop a finite-time estimation algorithm for exponen-
tially damped sinusoidal signals. A Dynamic regressor
extension and mixing (DREM)-based algorithm has also
been reported in Vediakova et al. (2020), where a linear
regression model was first obtained in terms of (nonlinear)
functions of the unknown parameters of the measured



signal. Hence, in the end, the unknown parameters were
reconstructed via additional nonlinear computations. This
is a common theme among all the proposed globally con-
vergent frequency estimators for harmonic signals, except
for Hsu et al. (1999).

In this paper, motivated by the popular technique of adap-
tive notch filters, Regalia (1991), Hsu et al. (1999), Mojiri
et al. (2007), we propose an alternative continuous-time
algorithm for online estimation of the parameters of expo-
nentially damped sinusoidal signals. The proposed scheme
has a simple structure and provides direct estimates of
the parameters of the signal. In contrast to Vediakova
et al. (2020), there are no extra nonlinear computations
involved for reconstructing the parameters of the signal.
For sufficiently slow adaptations, the (local) stability and
the convergence of the proposed algorithm has been inves-
tigated by time-scale separation and averaging techniques,
Riedle and Kokotovic (1986).

The remainder of the paper is organized as follows. In
Section 2, we formulate the problem and present the
proposed algorithm. The main results and convergence
analysis are provided in Section 3. Finally, Section 4
provides some numerical simulations followed by a brief
conclusion in Section 5.

2. PROBLEM STATEMENT AND THE PROPOSED
ALGORITHM

Consider the following measurable exponentially damped
sinusoidal signal

u(t) = Age 7 sin(wot + o), (1)

where its amplitude, Ag, damping factor, o9 > 0, fre-
quency wg > 0, and initial phase ¢y are all fixed but
unknown.

The task is to design continuous-time algorithms for online
estimation of the frequency and damping factor of the pure
exponentially damped sinusoidal signal (1).

The challenge of this problem is two-folded: (a) The ex-
ponentially damped sinusoidal signals are energy signals,
i.e, u(-) € Lo, and hence not persistently exciting (PE).
(b) The measurable signal (1) depends on the unknown
frequency and damping factor in a nonlinear fashion.

Remark 1. Tt is important to point out that it is possible
to find linear parameterization for the signal (1), in terms
of w3, o9 and o2, however, such parameterizations lead
to online estimates of the squared frequency/damping
factor and further nonlinear computations are required to
produce online estimates of the frequency and damping
factor. This could, in turn, lead to sensitivity of the
estimates in the presence of noise.

To motivate our proposed algorithm, consider the follow-
ing filter

(p+0)* +w?
H(p) = — 5 (2)
p*+2(Cw +o)p + (02 + w?)
where p := %, and ¢ > 0 is a design parameter.

Throughout this paper, with an abuse of notation, we refer
to ¢ as the damping ratio.

Feeding the exponentially damped sinusoidal signal (1) to
the filter (2) will provide (up to exponentially decaying
terms) a zero output when o = o¢ and w = wy. Therefore,
it is reasonable to adjust the parameters of the second-
order filter (2) online with estimators that exploit the
information from the filter output. Notice that the denom-
inator polynomial of the filter (2), can be in general re-
placed by any arbitrary second-order Hurwitz polynomial.
This particular choice, however, could be interpreted as
a generalization of Regalia’s notch filter, Regalia (1991),
Bodson and Douglas (1997). As pointed out earlier, the
unknown parameters enter nonlinearly—see the discus-
sion under Remark 1. Therefore, the question is, how to
design such adaptation laws to guarantee the stability
and asymptotic convergence of the algorithm? To address
this question, we will consider the following time-domain
representation of the second-order filter (2)

&+ 208 + (02 + whr = (2¢w)(u — ). (3)

Let e := u—1 to be the error. It is straightforward to verify
that, for fixed values of w and o, the transfer function
between the input v and output e is exactly the same as
the transfer function of the filter (2). Suppose, o = o and
w = wyp. Then for appropriately chosen initial conditions,
we have

i+ 2002+ (0f +wd)z =0,  Vt>0.

The foregoing identity implies that

wir = —i — 200& — opx,
2001 = —i — (—op + wd)z.

Hence, by using (3), and close to the true parameters,
where w ~ wy and o = 0(, we expect to have

wir ~ —i — 201 — or = w?r — 2(we,

2008 ~ —i — (—0% +whz = —20i — 2(we.
Equivalently, after multiplying by appropriate factors, we
have

—2Cwze,
—(waze.

(wg —w)z? ~
2

(00 —0)&

Hence, in the vicinity of the true parameter values, it

is reasonable to assume that (w3 — w?)2?  (—ze), and
(00 — 0)3?% o (—ie).

The derivations above suggest the following adaptation
laws

. wze

) = — _— 4
w 71 m ) ( )
. oxe

Fy — — _— 5
o 72 m ) ( )

where 1,72 > 0 determine the speed of adaptations,
and m, is an appropriately chosen (positive) normalization
signal that will be introduced later.

According to the foregoing derivations, whenever the es-
timated parameters @, are close to their nominal values
and adaptation is slow, the search in parameter space will
go in the right direction (e.g., when @ > wy = W< 0, or
when & < 09 = 6 > 0, or vice versa).



Remark 2. The term @& (resp. &) on the right-hand side
of (4) (resp. (5)) is introduced to make the set {& = 0}
(resp. {6 = 0}) invariant, and hence impose the positivity
of the estimated frequency (resp. damping factor) without
using the projection. The role of normalization signal m
will be unveiled in the course of stability and convergence
analysis.

Before we analyze the stability of the proposed adaptive
filter, we characterize its equilibria.

Fact 3. For the input signal u(t) = Age™7°" sin(wot + ¢p),
the dynamical system (3), (4), (5), has a unique solution
S = [z, ¥, @, 6]/, with constant and correct estimated
frequency and damping factor given by
— A
ol +wd
S =

e~ 7 (wp cos(wot + o) + oo sin(wot + o))
Ape 7 sin(wot + o)

wo

0o
Remark 4. It is clear from the second component of S
in (6), i.e., ¥, that the proposed adaptive filter also
reconstructs the signal without any extra computations.
This could be of interest in some applications, especially
when the measured signal wu(-) is corrupted with noise or
other harmonics.

Next, we introduce the normalization signal m as follows:

m = (&x;“"’fw% ™)

Remark 5. Note that it is important to initialize the fil-
ter (3) with non-zero states. Indeed, by using the initial
guesses for Ag,wp and oy, it is clear from (6) that one can
easily choose the initial conditions of the adaptive filter
(z(to), z(to),w(to), 5(tg)) to meet this requirement.

Remark 6. 1t is not hard to verify that for & = wo, 6 = oo,
x =7 and & = Z, we have m = A3e™27°! /(a2 + W3).

3. ANALYSIS

In this section, we investigate the stability of the proposed
adaptive filter and the asymptotic convergence of the
estimated parameters. The main result of this paper is
summarized in Theorem 7.

Let x := (z,%)’, be the states of the filter (3), and
define the new variables 71, 12 such that v = en; and
Yo = €n. Similar to other adaptive systems, the estimated
frequency w and damping factor 6 are expected to evolve
slowly compared to the filter states y for sufficiently small
adaptation gains 71, y2 and after a transient. By resorting
to the classical concept of the integral manifold of slow
adaptation, Riedle and Kokotovic (1986), we utilize a time-
scale separation, to provide a proof of stability.

Theorem 7. Consider the pure exponentially damped si-
nusoidal signal (1) applied to the adaptive filter of (3)-
(5), with the normalization signal defined in (7). Then,
there exists €*, such that for ¢ € [0,¢*], the adaptive
filter of (3)—(5) has a uniquely defined integral manifold
M, = {t,0,6,x : x = h(t,®,6)}, i.e., a time-varying

two-dimensional surface in R*. This e-family of integral
manifolds arbitrarily approaches the “frozen-parameter”
manifold My as € — 0. Furthermore, on the manifold M.,
the adaptation laws are locally exponentially stable in the
sense that w — wg, and 6 — 0g as t — .

Proof. For the purpose of analysis, it is convenient to use
the state-space realization of the adaptive filter (3)—(5)
given by

. 0 1 0

X= [(aﬂ +62) (2<w+&)] X+ {2@} v ()

N1 W X1 (U—Xz)
€ 2

(UX1;X2) + X%

. m20 x2 (u — x2)

0 = —€—— 5 .

(6) <O’X1;X2) + X%

For the frozen-parameters 6 := [0, 6], and the pure
exponentially damped sinusoidal signal (1), the steady-

state response of (8) denoted by x°(t, ), can be fully
characterized as follows:

X°(t,0) =
Kefa'ot

w=—

: (9)

(10)

sin(wot + o + )
—0g sin(wot + @o + 1) + wo cos(wot + o + ) |

where K = Ay |T'(—0o + jwo)|, ¥ = LT (=00 + jwy) and

B 200
Te) =32 +2(¢w + 6)s + (62 + w?)’

For the sake of brevity, and throughout the remainder of
the paper, we will simply omit the arguments (t,é) and
denote the quasi-static response x° (¢, é) by x°. Also, notice
that x° is a smooth function of 6.
Let z := x — x°, and
A 0 1
A0 =1 @2+ 6% —(2¢0 +6)

Since w,6 > 0 (recall the discussion under Remark 2),

the frozen-parameter matrix A(f) is Hurwitz. Considering
this fact, and using the previous observation about the
smoothness of x°, we can show that the conditions of
(Riedle and Kokotovic, 1986, Thm. 3.1) are satisfied. Due
to page restriction, however, we omitted the verification
of these conditions. Hence, for sufficiently small €, the
existence of the e-family of integral manifolds he(t,6) =
X°(t,0) + €ehy(t,0) + €2hy(t,0) + - - -, immediately follows
from (Riedle and Kokotovic, 1986, Thm. 3.1).

Next, we invoke (Riedle and Kokotovic, 1986, Thm. 4.1),
to analyze the stability of the adaptation laws. Note that
for z = 0, the adaptation laws reduce to

A 771‘2)X(1) e’
W = —e——,
m
: 126 x2° €
o = 5
m
. 2 2
where € := u — X3, and m® := ((6x} + x3)/@)” + x§".

It is not hard to verify that

°= 241(:) [((QQ —OJ(Q)) + (& -

e 55)) X1 +2(6 — 00)x5] -



From the derivations above, it is clear that (wq, og) is
an equilibrium point of (9), (10). Let @ := & — wp, and
0 = 0 — 09, be the deviations of the parameters, and
6 := 0 — 6y. Note that x9(¢,00) = z, x3(t,60) = &, where
7, and 7 are introduced in (6). By linearizing the reduced
dynamics about 6y := (wo, 09), we obtain the linear time-
varying (LTV) system

7’[]1 wWo J'_JQ 77]1 (Uof2 +S_Cii’)
éi € Cm, . CTTL, -2 éa (11)
_M200TT 1200 (coZZ +27)
¢m woCm

where m := ((o0 T + f)/wo)z—i— 72. By Remark 6, it is clear
that m = A2e=299! /(08 + w?). To analyze the stability of
the LTV system (11), we invoke (Riedle and Kokotovic,
1986, Thm. 4.1) and the averaging theorem—e.g., see
Sastry and Bodson (1989).

A close inspection of the LTV system (11) reveals the
importance of the normalization signal m in the dynamics
of the proposed adaptation laws (4), (5).

By applying the averaging theorem to the LTV dynamics
in (11), and using (6), we obtain the following linear time
invariant (LTT) system

T Wo

0
s 2¢
Oup = € +772 0.8 _772 0o Wo eam (12)
2¢ 2¢

where 6, denotes the averaged state. Clearly, the averaged
LTI system (12) is exponentially stable. Therefore, in light
of (Khalil, 2002, Thm. 4.15) and (Riedle and Kokotovic,
1986, Thm. 4.1), for sufficiently small €, the adaptive
filter (3)—(5) is locally stable and the estimated param-
eters will converge exponentially to their true values. This
completes the proof.

Remark 8. It is important to emphasize that the estab-
lished convergence result is just valid locally.

Remark 9. The preceding analysis shows that the (local)
rate of convergence of the proposed algorithm, and hence
the tuning parameters, depend on the (unknown) param-
eters of the signal. It also reveals how to circumvent this
issue by appropriate scaling of the adaptation laws and
projection on the nonnegative real numbers. Indeed, with
a similar analysis, we can show that the eigenvalues of the
averaged LTI system associated with the following adap-
tation laws are independent of the unknown parameters
oo and wy:

5 o— w zxe
T NG+ a)2 + (o) s
. wzre (13)
0 =Proj | —v2— — - .
(6x+ )"+ (Ox)?

This could enhance the tuning of the design parameters,
¢, 11 and ~s. Furthermore, if an upper-bound is known «a
priori for og, it could be easily incorporated into the Proj
operator.

Remark 10. A simple examination of the adaptations laws
(4)-(5), reveals that due to the product terms xe or e,

vanishing double-frequency ripples will appear in the esti-
mated parameters. As the parameters converge to their
true values, however, the double-frequency ripples also
keep being removed from the estimations. In other words,
there will be no double-frequency ripple on the estimated
parameters, when the true values are reached. Neverthe-
less, it is possible to mitigate these double-frequency rip-
ples by passing the cross-terms ze and ze through a low-
pass filter. Indeed, if a lower bound w of the nominal fre-
quency wy is known a priori, it is possible to employ a first-
order low-pass filter F(p) = A/(p+ A), with 0 < A <« 2w,
to smooth out the estimated parameters.

Remark 11. In practice, the measured signal could have a
de bias, i.e., up(t) = c+u(t), where ¢ denotes the constant,
yet unknown, offset on the input signal u(t) defined
in (1). The performance of the estimated parameters in
the proposed structure are prone to error in the presence
of such a dc component. To resolve this problem, and by
resorting to the internal model principle of control, Francis
and Wonham (1976), it is sufficient to augment an extra
integrator to the structure of the filter (2). The amended
filter is given by:

i+ 208 + (0% + w?)z = (2¢w)e (14)
z =ne

where e := u, — & — z, denotes the modified error signal
that will be employed in the adaptation laws (4), (5), and
1 > 0 determines the speed of adaptation of the augmented
state z.

Remark 12. 1t is very straightforward to generalize the
proposed algorithm to cope with the input signals com-
posed of N exponentially damped sinusoidal signals with
distinct frequencies, i.e. 4(t) = Zfil Aze % sin(wit + ;).
With a simple modification in the driving error signal e,
a parallel structure composed of N blocks of the proposed
adaptive algorithm can be utilized to estimate the param-
eters of signal @(¢). In this manner, each block extracts the
information of a different component of the signal 4(t).
For the i-th block of the parallel structure, the dynamics
of the second-order filter is given by

where e = u — Zf;l #; denotes the modified error
signal that feeds the adaptation laws in each block. If,
in addition, the input signal @(¢) has a dc component, an
extra integrator can be augmented to the parallel structure
of N blocks, as discussed in Remark 11, and the error
signal should be modified accordingly.

In the presence of additive measurement noise, as time
evolves, the signal to noise ratio (SNR) of the measurable
signal decreases. Consequently, when the SNR drops below
a certain threshold, the suggested normalization factor will
adversely magnify the noise, and it could eventually lead
to the parameter drift phenomenon. Hence, it is required
to modify the normalization signal, e.g. we can use [1 +

(6z+ i) + (@x)?] in (13).
4. SIMULATIONS

In this section, we present some numerical simulations
to demonstrate the performance of the proposed algo-
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Fig. 2. Performance of the proposed algorithm for a pure
exponentially damped sinusoidal signal

rithm. All the simulations are performed in the MAT-
LAB/Simulink environment.

First, we consider a pure exponentially damped sinusoidal
signal to assess the performance of the adaptive filter
of (3)—(5), with the normalization signal defined in (7).
Fig. 2 illustrates the response of the proposed algorithm to
u(t) = 4e %1t cos(20t). The input signal u(-) is depicted
in Fig. 1. The design parameters ( = 1, v; = 0.5, and
v9 = 9 are chosen for the simulation.

It is evident that the approximate LTI model (12) pro-
vides an accurate estimate of the convergence time of the
proposed algorithm. The error signal e(-) is also depicted
in Fig. 3.

Next, we consider the case where the measured signal has
an unknown dc component. For the sake of simulations, we
consider the signal uy(t) = 0.7 + 4 e~% cos(20t). Accord-
ing to Remark 11, an extra integrator has been augmented
to the proposed adaptive filter. Fig. 4 illustrates the per-
formance of the modified structure. The design parameters
¢(=1,n=25,v =0.25, and v = 2.5 are chosen for the
simulation.
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Fig. 3. The error signal of the proposed algorithm
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Fig. 4. Performance of the modified algorithm in the

presence of dc component
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Fig. 5. The multi-component input signal

Finally, we evaluate the capability of the proposed algo-
rithm for extracting multiple components. We consider the
input signal @(t) = 4 (e %055 cos(5t) + e~ cos(20t)).
Fig. 5 depicts the signal (-).

The parallel structure composed of two blocks of the
proposed algorithm and the modified error e = @ — &1 — 2>
is fed to each block—refer to Remark 12. The simulation
results are depicted in Fig. 6.

5. CONCLUSION

A continuous-time algorithm for online estimation of the
frequency and damping factor of exponentially damped
sinusoidal signals is proposed in this paper. In contrast
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Fig. 6. The performance of parallel structure for extracting
different components

with the existing algorithms, the proposed algorithm has
a simple structure and directly estimates the parameters
of the signal without any further computations. The pro-
posed algorithm can easily be modified to estimate multi-
ple modes in the presence of a dc bias. The main drawback
of the method lies in its local (exponential) stability and
convergence.
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