
Robust Multi-Scenario Dynamic Real-Time Optimization with Embedded 

Closed-Loop Model Predictive Control 
 

Lloyd MacKinnon* Christopher L.E. Swartz* 


*Department of Chemical Engineering, McMaster University, 

 1280 Main St. West, Hamilton, ON, L8S 4L7, Canada 

(e-mail: swartzc@mcmaster.ca) 

Abstract: Economic optimization is a key tool in ensuring competitive chemical plant operation. 

Traditional steady-state real-time optimization (RTO) is suboptimal in many applications where the plant 

exhibits frequent transitions or slow dynamics, thus requiring the use of dynamic RTO (DRTO). 

Additionally, DRTO algorithms exhibit faster response when able to account for the behavior of the 

underlying model predictive control (MPC) systems. This work seeks to combine closed-loop (CL) 

prediction of the plant response under the action of MPC with a scenario based robust modeling approach 

to account for plant uncertainty.  The CL prediction is handled by directly modeling the MPC calculations 

and reformulating the resulting multilevel optimization problem as a single-level mathematical program 

with complementarity constraints (MPCC). The proposed robust CL DRTO formulation is compared 

against a single-scenario nominal CL DRTO in terms of maximizing economic performance in a case study 

involving a nonlinear CSTR. The robust DRTO is shown to outperform the nominal DRTO in this metric 

on average across the scenarios tested. 

Keywords: dynamic real-time optimization, model predictive control, economic optimization, scenario-

based robust control, closed-loop prediction, uncertainty  
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1. INTRODUCTION 

Chemical plants typically use a control hierarchy in order to 

separate tasks of differing scope and time scale. Real-time 

optimization (RTO) and model predictive control (MPC) 

are often included as two adjacent layers within the 

hierarchy. RTO traditionally computes optimal economic 

operating conditions based on a steady-state plant model 

(Darby et. al., 2011). This optimal operating point is then 

communicated to the MPC as the set-point target for the 

controller. The MPC typically uses a target-tracking 

objective with a simple dynamic model of the plant to drive 

the plant conditions to this target (Qin and Badgwell, 2003). 

By assuming steady-state conditions, the RTO is limited if 

the process undergoes frequent or slow transitions as it can 

not predict the dynamics of the plant. Therefore, dynamic 

RTO (DRTO) has been developed to mitigate this 

limitation.  

Tosukhowong et. al. (2004) incorporate a reduced order 

dynamic model into an RTO framework and execute the 

resulting DRTO at a lower frequency than the underlying 

MPC to reduce computational requirements. Kadam et. al. 

(2002) use a two-layer DRTO-MPC architecture as well, 

but computational requirements are kept reasonable by 

employing a trigger mechanism where the DRTO layer 

executes only when certain disturbance estimation criteria 

are reached, rather than at a pre-determined frequency. Ellis 

and Christofides (2014) integrate the control and economic 

optimization problems by including control criteria in the 

DRTO layer (essentially converting it into an economic 

MPC). Swartz and Kawajiri (2019) provide a review of 

dynamic optimization applications for operation and design 

problems. 

The above DRTO strategies all assume an MPC at a lower 

level of control, but only optimize for the performance of 

the plant itself. However, the set-points provided to the 

MPC will not be reached instantaneously. The MPC will 

instead use its own optimization problem to determine the 

best path to achieve the set-points provided. Jamaludin and 

Swartz (2015) directly predict this MPC behavior in the 

DRTO problem, allowing the DRTO to provide set-point 

trajectories which are optimal for the entire MPC-plant 

system, rather than the plant alone. This closed-loop (CL) 

prediction was shown to improve performance over a 

corresponding open-loop (OL) DRTO which does not 

include consideration of the MPC behavior. This work was 

then extended through use of approximation methods 

(Jamaludin and Swartz, 2017a) to reduce the computational 

requirements of the CL DRTO. It was also applied to 

distributed systems (Jamaludin and Swartz, 2017b; Li and 

Swartz, 2019) where multiple MPC subsystems were 

coordinated with a single DRTO. 

This paper seeks to extend the CL DRTO framework to 

problems with uncertain plant models. Plant uncertainty has 

been widely studied in the context of robust MPC. 

Bemporad and Morari (1999) provide an excellent review 

of the major robust MPC techniques. In particular, the 

method of multi-scenario prediction is of interest here. In 

this method, the uncertain behavior is handled as a discrete 

set of possible plant realizations. Each realization generates 

a scenario of potential plant behavior and by modeling each 

scenario, the MPC can predict the plant response across a 



range of possible uncertainty realizations. Lucia et. al. 

(2012) use this method in a nonlinear MPC to generate a 

scenario tree, where each node of the tree branches 

according to the number of scenarios. This approach 

accommodates future input action but scales exponentially 

with the length of the branching horizon. Mastragostino et. 

al. (2014) use a similar technique for robust decision 

making of supply chains, where inclusion of approximate 

CL prediction is shown to improve performance. In the 

present work, robust multi-scenario prediction is utilized at 

the DRTO level, such that there are multiple scenario 

predictions within the DRTO, and incorporated into the CL 

DRTO method developed previously. This allows the 

DRTO to predict multiple uncertain plant realizations and 

predict the MPC behavior for each of these realizations. The 

DRTO determines the optimal set-point trajectory for the 

underlying plant MPC system based on the expected 

performance across multiple uncertain model scenarios. 

The following sections present the generalized discrete time 

formulation of the robust CL DRTO problem. First, the 

overall strategy of the optimization problem is discussed, 

including the interactions between the DRTO and the CL 

MPC predictions. The primary DRTO problem is then 

presented, followed by the embedded MPC subproblems 

which make up the CL predictions of the DRTO. Next, the 

interactions between the MPC subproblems and DRTO are 

expressed in detail. A reformulation approach is then 

presented to transform the two optimization problems into 

a single-level problem. The performance of the resulting 

formulation is compared against a single-scenario nominal 

CL DRTO implementation on a CSTR case study. The plant 

model used has a single uncertain parameter and the DRTO 

models three scenarios: minimum, nominal, and maximum 

values of the uncertain parameter. The DRTO provides set-

point trajectories to maximize the expected profit over three 

plant scenarios with different values of the uncertain 

parameter. 

2. FORMULATION 

2.1 General Purpose and Strategy 

The central idea of the proposed robust DRTO formulation 

is to apply a multi-scenario stochastic programming 

approach to the CL DRTO strategy of Jamaludin and Swartz 

(2015). This allows the DRTO to predict the plant response 

under the action of MPC for different plant scenarios, and 

take this behavior into account when determining optimal 

set-point trajectories. This process is illustrated below in 

Figure 1. 

2.2 Primary Dynamic Optimization Problem 

The primary optimization problem described here in the 

general form includes an economic objective function, a 

dynamic model of the plant behaviour (with different 

parameter values for each scenario), and any process 

constraints necessary for plant operation, including path 

constraints on the outputs and set-points. 

 

Fig. 1. Illustration of robust CL DRTO architecture. 

Equations (2)-(6) are applied for all scenarios 𝑖 = 1,… , 𝑆. 

max
𝒚𝑅𝑒𝑓,𝒖𝑅𝑒𝑓

𝜙 = ∑ 𝑤(𝑖) ∗ ∑ 𝑃𝑟𝑜𝑓𝑖𝑡𝑗
𝑖(𝒖𝑗

𝑖, 𝒙𝑗
𝑖 , 𝒚𝑗

𝑖 )𝑁
𝑗=0

𝑆
𝑖=1          (1) 

s.t.   𝒙𝑗+1
𝑖 = 𝒇𝑖(𝒙𝑗

𝑖 , 𝒖𝑗
𝑖) , 𝑗 = 0,… , 𝑁 − 1                          (2) 

        𝒚𝑗
𝑖 = 𝒉𝑖(𝒙𝑗

𝑖 , 𝒖𝑗
𝑖) + 𝒅𝑗

𝑖  , 𝑗 = 1, … , 𝑁                                (3) 

        𝟎 ≤ 𝒈𝑖(𝒙𝑗
𝑖 , 𝒖𝑗

𝑖) , 𝑗 = 0,… , 𝑁                                     (4) 

        𝒖𝑗
𝑖 = 𝒇𝑀𝑃𝐶(𝒚̃𝑗

𝑆𝑃, 𝒖̃𝑗
𝑆𝑃 , 𝒚𝑗

𝑖 ) , 𝑗 = 0,… , 𝑁 − 1             (5) 

        𝟎 = 𝒉𝑅𝑒𝑓(𝒚𝑅𝑒𝑓 , 𝒖𝑅𝑒𝑓 , 𝒚̃𝑆𝑃, 𝒖̃𝑆𝑃)                                (6) 

        𝒚𝑚𝑖𝑛
𝑅𝑒𝑓

≤ 𝒚𝑗
𝑅𝑒𝑓

≤ 𝒚𝑚𝑎𝑥
𝑅𝑒𝑓

 , 𝑗 = 0,… , 𝑁 − 1                   (7) 

        𝒖𝑚𝑖𝑛
𝑅𝑒𝑓

≤ 𝒖𝑗
𝑅𝑒𝑓

≤ 𝒖𝑚𝑎𝑥
𝑅𝑒𝑓

 , 𝑗 = 0, … , 𝑁 − 1                  (8) 

In the above, 𝑖, 𝑗 are the scenario and time index, 

respectively; 𝑆, 𝑁 are the total number of scenarios and 

optimization horizon, respectively; 𝜙 is the objective 

function; 𝑤(𝑖) are the scenario weights; 𝒖𝑗
𝑖, 𝒙𝑗

𝑖 , 𝒚𝑗
𝑖  are the 

vectors of inputs, states, and outputs, respectively; 𝒇𝑖 , 𝒉𝑖 are 

the dynamic and algebraic equations for the plant model, 

respectively; 𝒈𝑖 are the inequality process constraints; 𝒇𝑀𝑃𝐶 

are the equations defining the MPC subproblems; 

𝒚𝑅𝑒𝑓 , 𝒖𝑅𝑒𝑓 are the composite vectors of output and input 

reference trajectories, respectively; 𝒚̃𝑗
𝑆𝑃 , 𝒖̃𝑗

𝑆𝑃 are the setpoint 

trajectories provided to the MPC subproblems; ~ denotes a 

variable specific to the MPC subproblems; 𝒉𝑅𝑒𝑓  are the 

equations connecting the reference trajectories with the 

setpoints; and 𝒚𝑚𝑖𝑛
𝑅𝑒𝑓

, 𝒚𝑚𝑎𝑥
𝑅𝑒𝑓

, 𝒖𝑚𝑖𝑛
𝑅𝑒𝑓

, 𝒖𝑚𝑎𝑥
𝑅𝑒𝑓

, 𝒚𝑚𝑖𝑛 , 𝒚𝑚𝑎𝑥 are the 

lower and upper bounds on the reference trajectories and 

outputs, respectively. 

The primary optimization problem predicts the future plant 

evolution under different realizations of the uncertain plant 

parameter in (2) and (3). It uses these future plant conditions 

to determine the profit obtained by the plant in each of these 

scenarios and uses a weighted sum of the scenario profits as 

the objective function in (1). Additional inequality 

constraints for the process are included in (4). The input 

moves for each scenario are determined by the MPC 

subproblems, expressed in (5). The MPC subproblems 

receive subsets of the overall reference trajectories, defined 



in (6). Finally, the reference trajectories are constrained in 

(7) and (8). The optimization degrees of freedom for this 

problem are the single unified reference trajectories from 

which set-point trajectories are extracted and provided to 

the plant MPC. 

2.3 Embedded MPC Subproblems 

Embedded within the DRTO problem are MPC 

subproblems which predict the behavior of the MPC given 

the set-point trajectories determined by the primary 

problem. In this study we consider linear MPC. The MPC 

subproblems are executed for each scenario 𝑖 = 1,… , 𝑆 and 

for each step of the optimization horizon 𝑗 = 0,… , 𝑁 − 1. 

min
𝒖̃𝑗,𝑘

𝑖
𝜙̃𝑗

𝑖 = (∑ (𝒚̃𝑗,𝑘
𝑖 − 𝒚̃𝑗,𝑘

𝑆𝑃)
𝑇
𝑄(𝒚̃𝑗,𝑘

𝑖 − 𝒚̃𝑗,𝑘
𝑆𝑃)

𝑝
𝑘=1 +

                        ∑ (Δ𝒖̃𝑗,𝑘
𝑖 )

𝑇
𝑅(Δ𝒖̃𝑗,𝑘

𝑖 )𝑚−1
𝑘=0 +

                        ∑ (𝒖̃𝑗,𝑘
𝑖 − 𝒖̃𝑗,𝑘

𝑆𝑃)
𝑇
𝑆(𝒖̃𝑗,𝑘

𝑖 − 𝒖̃𝑗,𝑘
𝑆𝑃)𝑚−1

𝑘=0 )            (9) 

s.t. 𝒙𝑗,𝑘+1
𝑖 = 𝐴𝒙𝑗,𝑘

𝑖 + 𝐵𝒖̃𝑗,𝑘
𝑖   𝑘 = 0,… ,𝑚 − 1                 (10) 

      𝒙𝑗,𝑘+1
𝑖 = 𝐴𝒙𝑗,𝑘

𝑖 + 𝐵𝒖̃𝑗,𝑚−1
𝑖   𝑘 = 𝑚,… , 𝑝 − 1            (11) 

      𝒚̃𝑗,𝑘
𝑖 = 𝐶𝒙𝑗,𝑘

𝑖 + 𝒅̃𝑗,𝑘
𝑖   𝑘 = 0,… , 𝑝                               (12) 

      Δ𝒖̃𝑗,𝑘
𝑖 = 𝒖̃𝑗,𝑘

𝑖 − 𝒖̃𝑗,𝑘−1
𝑖   𝑘 = 0,… ,𝑚 − 1                 (13) 

      𝒖𝑚𝑖𝑛 ≤ 𝒖̃𝑗,𝑘
𝑖 ≤ 𝒖𝑚𝑎𝑥   𝑘 = 0,… ,𝑚 − 1                      (14) 

In the above, 𝑝,𝑚 are the prediction and control horizons, 

respectively; 𝑄, 𝑅, 𝑆 are the output deviation, input move 

penalty, and input deviation weighting matrices, 

respectively; 𝐴, 𝐵, 𝐶 are the state-space model matrices; 𝒅𝑗,𝑘
𝑖  

is the disturbance estimate; and 𝒖𝑚𝑖𝑛 , 𝒖𝑚𝑎𝑥 are the lower 

and upper input bounds, respectively. 

The embedded MPC subproblems assume a standard 

QDMC algorithm (Garcia and Morshedi, 1986). The 

objective function, (9), is a target tracking objective with an 

input move penalty. The process model uses a linear state-

space model in (10)-(12) with control horizon 𝑚 and 

prediction horizon 𝑝. The inputs are constrained in (14) and 

the input move change defined in (13). 

2.4 Initialization, Update, and Feedback 

The primary optimization problem and the embedded MPC 

subproblems interact by the primary problem providing 

initial conditions and a disturbance estimate to the MPC, 

and the MPC providing input moves to the primary 

problem. These interactions occur for every scenario 𝑖 =
1,… , 𝑆 and at every time step 𝑗 along the DRTO prediction 

horizon. 

Equation (6) shows that the set-points used at the MPC level 

are determined from the reference trajectories calculated in 

the DRTO problem. Specifically, the set-points are a subset 

of the reference trajectories, as defined in (15) and (16). 

      𝒚̃𝑗,𝑘
𝑆𝑃 = 𝒚𝑗+𝑘

𝑅𝑒𝑓
− 𝒚𝑠𝑠                                                           (15) 

      𝒖̃𝑗,𝑘
𝑆𝑃 = 𝒖𝑗+𝑘

𝑅𝑒𝑓
− 𝒖𝑠𝑠                                                           (16) 

Where 𝒚𝑠𝑠, 𝒖𝑠𝑠 are the steady state values of the outputs and 

inputs, respectively. The steady state values are subtracted 

because the MPC variables are in deviation form, as the 

MPC uses a linear state-space model, while the DRTO 

variables are not.  

The disturbance estimate for QDMC is normally computed 

as the difference between the measured and predicted 

outputs. Here, the MPC subproblems instead use the DRTO 

primary problem output prediction as a proxy for a 

measured output, shown in (17). The disturbance estimate 

is assumed constant for the length of each MPC subproblem 

in (18). 

      𝒅̃𝑗,0
𝑖 = (𝒚𝑗

𝑖 − 𝒚𝑠𝑠) − 𝐶𝒙𝑗,0
𝑖   𝑗 = 0, … , 𝑁 − 1                (17) 

      𝒅̃𝑗,𝑘
𝑖 = 𝒅̃𝑗,0

𝑖   𝑘 = 1,… , 𝑝  𝑗 = 0,… , 𝑁 − 1                      (18) 

The initial states for the first MPC subproblem are the MPC 

predicted states at the first time step in the previous DRTO 

execution (𝒙1,0,𝑝𝑟𝑒𝑣
𝑖 ), shown in (19), and for each 

subsequent MPC subproblem the initial states are the 

predicted states in the last MPC execution, (20). Similarly, 

the previous MPC input (required for the change in input 

computation) for the first MPC is the last implemented input 

move for the actual plant, (21), and is the last MPC 

computed optimal input move for all subsequent MPC 

subproblems (22). 

      𝒙0,0
𝑖 = 𝒙1,0,𝑝𝑟𝑒𝑣

𝑖                                                                       (19) 

      𝒙𝑗,0
𝑖 = 𝒙𝑗−1,1

𝑖   𝑗 = 1, … , 𝑁 − 1                                             (20) 

      𝒖̃0,−1
𝑖 = 𝒖−1 − 𝒖𝑠𝑠                                                                  (21) 

      𝒖̃𝑗,−1
𝑖 = 𝒖̃𝑗−1,0

𝑖   𝑗 = 1, … , 𝑁 − 1                                          (22) 

In (5), the DRTO inputs are determined by the MPC 

subproblems. The DRTO uses the first computed MPC 

input move of each MPC subproblem as the input value for 

that scenario and DRTO time step, as shown in (23). 

      𝒖𝑗
𝑖 = 𝒖̃𝑗,0

𝑖 + 𝒖𝑠𝑠  𝑗 = 0, … , 𝑁 − 1                                      (23) 

2.5 Solution Strategy 

The primary DRTO optimization problem and the MPC 

subproblems make up a single multilevel optimization 

problem, where the objective function is (1) and (2)-(8) are 

the DRTO constraints. Equations (9)-(14) make up the inner 

MPC subproblems and are included as constraints in the 

primary DRTO problem. The two optimization problems 

are related by further constraints in (15)-(23), such that the 

solution of the primary problem depends on the solutions of 

the MPC subproblems. 

This multilevel programming problem could be solved via 

several methods. In this paper, the simultaneous approach 

presented in Jamaludin and Swartz (2015) is used, where 

the two problems are solved simultaneously. This is 

accomplished by reformulating the embedded MPC 

subproblems as their first order Karush-Kuhn-Tucker 

(KKT) conditions, as shown in Baker and Swartz (2008). 

These conditions are expressed as algebraic equations and 



are then included in the primary DRTO problem as 

constraints. Since the MPC subproblems are each a convex 

QP, the first order KKT conditions are necessary and 

sufficient for optimality. 

The reformulation produces a mathematical program with 

complementarity constraints (MPCC). The complemen-

tarity constraints are handled using an exact penalty 

approach, as proposed in Ralph and Wright (2004). The 

product of the primal and dual KKT variables are summed 

and multiplied by an appropriate weighting factor and then 

included in the objective function. With a sufficiently large 

weight, the solution to the original MPCC is obtained. The 

resulting problem may then be solved by a standard NLP 

solver. 

3. CASE STUDY 

3.1 Single Reaction CSTR 

The case study investigated is a nonlinear CSTR with one 

inlet stream, one outlet stream, and one reaction occurring 

with one reactant and one product. The reaction kinetics are 

described by a Michaelis-Menten equation and the 

differential equations for the concentration of reactant and 

product are shown in (24), (25) (Gao, 2012), 

𝑑𝐶

𝑑𝑡
= 𝐷 ∗ (𝐶𝑖𝑛 − 𝐶) −

𝑉𝑚∗𝐶

𝐾𝑠+𝐶
                                                  (24) 

𝑑𝑃

𝑑𝑡
=

𝑉𝑚∗𝐶

𝐾𝑠+𝐶
− 𝐷 ∗ 𝐶                                                              (25) 

where 𝐶, 𝑃 are the concentrations of reactant and product, 

respectively, 𝐶𝑖𝑛 is the inlet concentration of reactant, 𝐷 is 

the ratio of flow rate to reactor volume, 𝑉𝑚 is the maximum 

reaction rate, 𝐾𝑠 is the reaction constant, and 𝑡 is time. 

3.2 Translation to Optimization Formulation 

For application to the DRTO formulation, the inlet 

concentration of reactant is used as the input (𝑢 = 𝐶𝑖𝑛), the 

concentration of reactant and product are the states (𝑥1 = 𝐶, 

𝑥2 = 𝑃), and the concentration of product the output (𝑦 =
𝑃). The differential equations are solved numerically in the 

DRTO using the backward Euler method resulting in the 

following dynamic and algebraic equations. 

[
𝑥1,𝑗+1

𝑖

𝑥2,𝑗+1
𝑖

] =

[
 
 
 
 𝑥1,𝑗

𝑖 + (𝐷 ∗ (𝑢𝑗
𝑖 − 𝑥1,𝑗+1

𝑖 ) −
𝑉𝑚∗𝑥1,𝑗+1

𝑖

𝐾𝑠+𝑥1,𝑗+1
𝑖 ) ∗ Δ𝑡

𝑥2,𝑗
𝑖 + (

𝑉𝑚∗𝑥1,𝑗+1
𝑖

𝐾𝑠+𝑥1,𝑗+1
𝑖 − 𝐷 ∗ 𝑥2,𝑗+1

𝑖 ) ∗ Δ𝑡 
]
 
 
 
 

  

   (26) 

𝑦𝑗
𝑖 = 𝑥2,𝑗

𝑖 + 𝑑𝑗
𝑖                                                                       (27) 

The algebraic equation, (27), uses the second state as the 

output and includes a disturbance estimate. This disturbance 

estimate is the scenario prediction (using the backward 

Euler equations) minus the last measured plant output value 

and is assumed constant for the duration of the optimization 

horizon. 

The backward Euler equations above make up the nonlinear 

discrete time model used in the primary DRTO problem. 

For the MPC subproblems, the linearized model of the same 

process found in Gao (2012) is discretized using a zero-

order hold and then converted to state-space form. 

The value of the maximum reaction rate, 𝑉𝑚, is treated as 

the uncertain parameter with a deviation of ±20%. The 

DRTO uses three scenarios, with the minimum, nominal, 

and maximum values of 𝑉𝑚, respectively. The scenario 

weights are determined to reflect a normal distribution with 

minimum and maximum parameter values assumed to be 

two standard deviations from the mean. 

The objective for this case study is profit maximization, 

where the reactor accumulates revenue only when the 

product concentration is within a specified quality band, and 

an input cost is subtracted. The discrete nature of the quality 

band is approximated with a product of hyperbolic tangent 

functions. 

𝜙 = ∑ 𝑤(𝑖) ∗ ∑ 10 ∗ 𝑅1,𝑗
𝑖 ∗ 𝑅2,𝑗

𝑖 − 𝑢𝑗
𝑖𝑁

𝑗=0
𝑀
𝑖=1                         (28) 

𝑅1,𝑗
𝑖 =

1

2
tanh (𝛾(𝑦𝑗

𝑖 − (1 − 𝛿)𝑦𝑗
𝑡𝑎𝑟)) +

1

2
                         (29) 

𝑅2,𝑗
𝑖 =

1

2
tanh (𝛾 ((1 + 𝛿)𝑦𝑗

𝑡𝑎𝑟 − 𝑦𝑗
𝑖)) +

1

2
                        (30) 

This product above approximates 𝑅1 ∗ 𝑅2 ≈ 1 if (1 −
𝛿)𝑦𝑗

𝑡𝑎𝑟 ≤ 𝑦 ≤ (1 + 𝛿)𝑦𝑗
𝑡𝑎𝑟 .  

Additionally, the set-point trajectories are constrained such 

that the set-point can only change value every four time 

steps, rather than every time step. This serves to smooth the 

transition and slightly decreases the size of the optimization 

problem.  

The DRTO and MPC parameters are listed in Table 1.  

Table 1. Relevant optimization, MPC, and case study 

parameter values 

Parameter Description Value Units 

𝑁 
Optimization 

horizon 
40 - 

Δ𝑡𝐷𝑅𝑇𝑂 
DRTO time 

step 
2 h 

𝑝 
MPC prediction 

horizon 
10 - 

𝑚 
MPC control 

horizon 
2 - 

Δ𝑡𝑀𝑃𝐶  MPC time step 1 h 

𝑄 

Output 

deviation 

weight 

10 - 

𝑅 
Input move 

penalty weight 
1 - 

𝑆 
Input deviation 

weight 
0 - 

𝑦𝑚𝑖𝑛
𝑆𝑃  

Output set-point 

lower bound 
0 g/L 

𝑦𝑚𝑎𝑥
𝑆𝑃  

Output set-point 

upper bound 
5.724 g/L 

𝑢𝑚𝑖𝑛 
Input lower 

bound 
0 g/L 



𝑢𝑚𝑎𝑥 
Input upper 

bound 
10 g/L 

𝛾 Hyp tan weight 100 - 

𝐷 
Ratio of flow 

rate to volume 
0.4 h-1 

𝑉𝑚 
Maximum 

reaction rate 
0.5 g/L∙h 

𝐾𝑠 
Reaction 

constant 
0.2 g/L 

3.3 Subcase 1: Small Transition with Constrained Output 

The first subcase investigated involves a relatively small 

transition of 0.1 g/L for the product concentration, with a 

tight quality band. The initial conditions for the problem are 

𝑢0 = 1 g/L, 𝑥1,0 = 0.276 g/L, and 𝑥2,0 = 0.724 g/L. The 

value of 𝑦𝑡𝑎𝑟  is 0.826 g/L, with 𝛿 = 0.01.  

For this subcase, an additional one-sided linear economic 

penalty is added to the objective function for exceeding a 

product concentration of 0.84 g/L. This is included to 

represent an additional cost in the process required to 

correct a product concentration substantially higher than 

intended. The weight on this penalty term is −100.  

 

Fig. 2. Input and output trajectories for subcase 1. 

In Figure 2 (and Figure 3 below), the minimum, 𝑉𝑚 = 0.4 

(left), nominal, 𝑉𝑚 = 0.5 (centre), and maximum, 𝑉𝑚 = 0.6 

(right) uncertain parameter value scenarios are shown. The 

solid line is the robust DRTO trajectory, the black dashed 

line is the nominal CL DRTO trajectory, the blue dashed 

lines are the bounds of the profit band, and the red dashed 

line is the upper bound that triggers the additional economic 

penalty. 

Table 2. Actual profit values for the nominal and 

robust DRTO for the first subcase 

Scenario Nominal Robust Percent 

Improvement 

Minimum 51.48 38.70 -24.8 

Nominal 143.6 124.7 -13.2 

Maximum 98.08 155.4 58.4 

Average 97.72 106.3 8.78 

Table 2, above, shows that, in the first subcase, the robust 

DRTO displays improved performance in terms of 

economics on average over the nominal DRTO. 

Additionally, the nominal DRTO exceeds the economic 

penalty upper bound trigger in the maximum scenario while 

the robust DRTO does not. This is accomplished by 

exhibiting less aggressive performance in all three 

scenarios, as can be seen in Figure 2, resulting in reduced 

economic performance in the minimum and nominal 

scenarios because the output reaches the profit band later 

than in the nominal DRTO case. However, this less 

aggressive performance reduces overshoot in the maximum 

scenario, improving economic performance largely by 

avoiding exceeding the upper bound trigger of the economic 

penalty. For this subcase, the average solution time for the 

robust DRTO was 4.3 seconds, with a maximum time of 

15.7s, compared to the average nominal DRTO time of 

0.4s, with a maximum of 1.3s. These solutions were 

obtained using a 3.2GHz INTEL CORE i7-8700 processor 

with 8GB RAM running Windows 10. 

3.4 Subcase 2: Large Transition with Unconstrained 

Output 

The second subcase investigated involves a larger transition 

of 0.276 g/L for the product concentration, with a looser 

profit band and no upper bound economic penalty term. The 

simulation time is also increased to 40 h to accommodate 

the larger transition magnitude. The initial conditions for 

the problem are the same as for subcase 1. The value of 𝑦𝑡𝑎𝑟  

is 1 g/L, with 𝛿 = 0.05.  

 

Fig. 3. Input and output trajectories for subcase 2. 

 

Table 3. Actual profit values for the nominal and 

robust DRTO for the second subcase 

Scenario Nominal Robust Percent 

Improvement 

Minimum 48.03 50.45 5.04 

Nominal 301.1 288.0 -4.35 

Maximum 251.0 321.0 27.9 

Average 200.0 219.8 9.90 



The second subcase shows similar performance of the 

robust DRTO as the first subcase, as seen in the economic 

data in Table 3. The robust DRTO is less aggressive in all 

three scenarios, seen in Figure 3, leading to only slight 

improvement in performance in the minimum scenario and 

a reduction in performance in the nominal scenario. In the 

maximum scenario, the robust DRTO is able to maintain the 

product concentration in the profit band for more time than 

the nominal DRTO because the nominal DRTO is 

overshooting the band, thus improving on the economic 

performance. Additionally, the robust DRTO decreases the 

settling time required by the nominal DRTO in the 

maximum scenario. On average, the robust DRTO again 

improves on the single scenario DRTO. For this subcase, 

the average solution time for the robust DRTO was 23.9 

seconds, with a maximum of 68.9s, compared to the 

average nominal DRTO time of 2.6s, with a maximum of 

8.5s, using the same system as before. 

4. CONCLUSIONS 

In this work, a robust CL DRTO algorithm is presented and 

tested. The formulation models the dynamics of the system 

in real-time while predicting the future MPC action in 

response to set-point trajectories provided by the DRTO. It 

does this for multiple uncertain plant models to predict a 

range of possible plant behavior. Within each of these 

scenarios, it performs the CL MPC prediction and is thus 

able to determine the optimal set-point trajectory for the 

MPC-plant system across multiple scenarios. 

The robust CL DRTO formulation is tested against a similar 

algorithm which also exhibits CL prediction of future MPC 

responses but does not consider multiple uncertain plant 

scenarios. In a case study involving a nonlinear CSTR, the 

robust CL DRTO is shown to outperform the nominal CL 

DRTO in terms of expected profit generation across three 

scenarios of possible plant behaviour. It accomplishes this 

by generally sacrificing performance in one or two of the 

three scenarios which then allows for improved 

performance in the third scenario by a larger margin, thus 

improving performance overall. 

In future work, the robust CL DRTO formulation will be 

tested on more complex case studies involving multiple 

inputs and outputs. The effect of number of modelled 

scenarios will also be investigated, as well as the 

performance of the formulation in the event of multiple 

uncertain parameters. The formulation will also be adjusted 

to accommodate approximation methods which will seek to 

reduce computation time with minimal loss of performance. 
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