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Abstract: The present work studies the control problem of a pressure swing adsorption (PSA) unit using a 

robust stabilizing infinite-horizon model predictive (RIHMPC) strategy with guarantee of feasibility for 

realistic mismatch scenarios. The identification of the multi-plant linear models was done based on an 

operating confidence region. This procedure is based on an optimal point given by an optimization layer, 

concomitantly with the uncertainty associated with that point. As a case study, it was evaluated the control 

of a PSA unit for the purification of syngas by porous amino-functionalized titanium terephthalate MIL-

125 in the PSA. The results demonstrated that RIHMPC might be an efficient strategy to address the control 

of cyclic adsorption processes accommodating the intrinsic nonlinearities and uncertainties of these 

processes. 
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1. INTRODUCTION 

Pressure Swing Adsorption (PSA) processes are known for 

their capacity to promote efficiently complex gas phase 

separation. To perform the separation,  they take  advantage of 

the differences in the kinetics and/or equilibrium between the 

gases and solid phase. In order to play with the 

phenomenology of the system, the operation of these units is 

done in steps with specific roles. Consequently, those 

processes assume a periodic dynamic nature, in which no 

steady state is reached. This dynamic behavior corroborates to 

a series of issues found in the field, which are still open in the 

literature. The control of those units is one of these problems.  

Few works can be found in the literature addressing the control 

problem in PSA units. Most of those works address this 

problem using reduced-order models coped with model 

predictive control solutions (MPC) (Dias and Ierapetritou, 

2019; Khajuria and Pistikopoulos, 2011; M. Mulholland, 

2009; Rumbo Morales et al., 2020).  In Dias and Ierapetritou 

(2019), in the control context, besides the system dynamics, 

the model identification is presented as one of the main 

challenges in the advanced control of the intensified process. 

On one hand, the first principle models for those processes are 

complex and associated with a heavy computational effort, 

which has limited their application to an offline scenario. On 

the other hand, the reduced-order models are limited to a short 

operating range, out of which their prediction starts to be 

unreliable.  

In this context, to consider the model's uncertainty appears to 

be a good solution. It might allow the use of computationally 

efficient models while addressing their associated 

uncertainties. Therefore, the Robust Model Predictive 

Controller (RMPC) can be presented as a conciliative solution 

in the PSA control field. These controllers deal with systems 

whose several models can be used to represent the system 

under study. Among the RMPC literature, it is possible to 

highlight the structure proposed by Badgwell, (1997). In the 

referred work, the author extended the stabilizing infinite-

horizon strategy to the robust scenario considering a multi-

plant uncertainty description. Therefore, achieving asymptotic 

stability using a Lyapunov-like function and robust stability 

using terminal constraints. This strategy, known as Robust 

stabilizing infinite-horizon model predictive controller 

(RIHMPC), due to the above characteristics, has demonstrated 

its potential for practical implementation (Martins et al., 2014; 

Nogueira et al., 2020(1)).  

The RIHMPC considers model uncertainty using a range of 

possible linear models in a multi-plant approach. Therefore, 

one of its core points is a discrete set of linear models used to 

represent the nonlinearities of the process. Thus, a 

methodology for the identification of these models needs to be 

defined. 

Hence, the objective of this work is to present a RIHMPC 

applied in the control of a PSA unit, hitherto unexplored in the 

literature. In fact, as far as we know, stabilizing MPC 

strategies, including robust formulation to handle model 



 

 

     

 

uncertainty, have not yet been reported in the literature, so this 

is an important contribution of the article. A strategy for the 

identification of linear models of the unit is also proposed, 

which is based on the uncertainty evaluation of an optimal 

point. As a case study, the purification of synthesis gas, 

syngas, is presented. This case study has great appeal to the 

energy industry, as the syngas is one of the main sources 

available for the production of pure H2 and synthetic fuels. 

2. MATHEMATICAL MODELS 

2.1 Pressure Swing Adsorption 

A rigorous model of the PSA unit was here used to identify the 

reduced-order models. The model for purification of syngas by 

porous amino-functionalized titanium terephthalate MIL-125 

in the PSA was validated experimentally by Regufe et al. 

(2015). This model was based on the following assumptions: 

ideal gas behavior throughout the column; no mass, heat or 

velocity gradients in the radial direction; axial dispersed plug 

flow; external mass and heat transfer resistances expressed 

with the film model; internal mass transfer resistance 

expressed with the Linear Driving Force (LDF) model; no 

temperature gradients inside each particle since the heat 

transfer in the solid particles is much faster than in the gas 

phase; constant porosity along the bed; the Ergun equation is 

valid locally, i.e., in the momentum balance, only the terms of 

pressure drop and velocity change. The model, proposed by Da 

Silva et al., (1999), is composed by the following points. 

Mass balance in the gas phase: 

𝜕

𝜕𝑧
(𝜀𝐷𝑎𝑥𝐶𝑔,𝑇

𝜕𝑦𝑖
𝜕𝑧
) −

𝜕

𝜕𝑧
(𝑢0𝐶𝑔,𝑖) − 𝜀

𝜕𝐶𝑔,𝑖

𝜕𝑡
− (1 − 𝜀)𝑎𝑝𝑘𝑓(𝐶𝑔,𝑖 − 𝐶𝑠,𝑖) = 0 

 

(1) 

 

where 𝑧 is the axial position, 𝑡 is the time, 𝜀 is the bed 

porosity, 𝑢0 is the superficial velocity, 𝐶𝑔,𝑇 and 𝐶𝑔,𝑖  are 

respectively the total and component 𝑖 gas-phase 

concentrations, 𝑦𝑖  is the component 𝑖 molar fraction, 𝐶𝑠,𝑖 is 

the concentration of component 𝑖 at the solid interface, 𝐷𝑎𝑥  

is the mass axial dispersion coefficient, 𝑘𝑓 is the film mass 

transfer coefficient, 𝑎𝑝 is the particle external specific area.  

The pressure drop represented by the Ergun equation as: 

−
𝜕𝑃

𝜕𝑧
=
150𝜇(1 − 𝜀)2

𝜀3𝑑𝑝
2 𝑢0 +

1.75(1 − 𝜀)𝜌

𝜀3𝑑𝑝
|𝑢0|𝑢0 (2) 

 

with  𝑃 as the total pressure, 𝜇 as the gas viscosity, 𝜌 as the 

gas density, 𝑑𝑝 as the particle diameter. 

The energy balance is given by: 

𝜕

𝜕𝑧
(𝜆
𝜕𝑇𝑔

𝜕𝑧
) − 𝑢0𝐶𝑔,𝑇𝐶𝑝

𝜕𝑇𝑔

𝜕𝑧
+ 𝜀𝑅𝑔𝑇𝑔

𝜕𝐶𝑔,𝑇

𝜕𝑡

− (1 − 𝜀)𝑎𝑝ℎ𝑓(𝑇𝑔 − 𝑇𝑝) −
4ℎ𝑤
𝑑𝑤𝑖

(𝑇𝑔 − 𝑇𝑤)

− 𝜀𝐶𝑔,𝑇𝐶𝑉
𝜕𝑇𝑔

𝜕𝑡
= 0 

(3) 

where, 𝑇𝑔, 𝑇𝑝 and 𝑇𝑤 are respectively the gas; particle and 

wall temperatures 𝐶𝑣 and 𝐶𝑝 are the gas molar specific heats 

at constant volume and pressure, respectively; 𝑅𝑔 is the ideal 

gas constant; 𝑑𝑤𝑖  is the wall internal diameter; 𝜆 is the heat 

axial dispersion coefficient; ℎ𝑓 is the film heat transfer 

coefficient between the gas phase and the particle; ℎ𝑤 the 

heat transfer coefficient between the gas phase and the wall. 

Linear driving force model (LDF) to represent the mass 

transfer rates in the solid phase: 

𝜕𝑞𝑖̅
𝜕𝑡

=
15𝐷𝑝,𝑖

𝑅𝑝
2
(𝑞𝑖

∗ − 𝑞𝑖̅) (4) 

where 𝐷𝑝,𝑖 is the pore diffusivity, 𝑅𝑝 is the particle radius, 𝑞𝑖̅ 

is the particle averaged adsorbed concentration, and 𝑞𝑖
∗ is the 

adsorbed concentration in equilibrium with 𝐶𝑠,𝑖 calculated 

with the multicomponent extension. 

Langmuir isotherm as: 

𝑞𝑖
∗ = 𝑞𝑚,𝑖

𝐾𝑖𝑃𝑖
[1 + ∑ 𝐾𝑗𝑃𝑗]

𝑛
𝑗=1

 (5) 

 

where 𝐾𝑗 is the affinity constant. The isotherms parameters 

are given in Table 1. 

Table 1 - Langmuir parameters. 

Species 𝑞𝑚 (mol·kg-1) 𝐾𝑖
0 (bar-1) (−∆𝐻) 

(kJ·mol-1) 

CO2 8.509 0.5782 × 10-5 21.9 

CO 5.229 3.2700 × 10-4 11.9 

H2 0.294 9.3900 × 10-7 35.3 

Fluxes equality at particle surface given by: 

(1 − 𝜀)𝑎𝑝𝑘𝑓

𝜌𝑏
(𝐶𝑔,𝑖 − 𝐶𝑠,𝑖) =

15𝐷𝑝,𝑖

𝑅𝑝
2

(𝑞𝑖
∗ − 𝑞𝑖̅) (6) 

The solid phase energy balances are given by: 

(1 − 𝜀) [𝜀𝑝∑𝐶𝑝,𝑖̅̅ ̅̅̅𝐶𝑣,𝑖 + 𝜌𝑝∑𝑞𝑖̅𝐶𝑣,𝑎𝑑𝑠,𝑖 + 𝜌𝑝𝐶̂𝑝𝑠

𝑛

𝑖=1

𝑛

𝑖=1

]
𝜕𝑇𝑝

𝜕𝑡

= (1 − 𝜀)𝜀𝑝𝑅𝑔𝑇𝑝
𝜕𝐶𝑝,𝑇̅̅ ̅̅ ̅

𝜕𝑡

+ 𝜌𝑏∑(−∆𝐻𝑎𝑑𝑠)𝑖
𝜕𝑞𝑖̅
𝜕𝑡

+ (1 − 𝜀)𝑎𝑝ℎ𝑓(𝑇𝑔 − 𝑇𝑝)

𝑛

𝑖=1

 

(7) 

where 𝜌𝑏 is the bulk density of the bed; 𝐶̂𝑝𝑠 is the solid 

specific heat per mass unit; (−∆𝐻𝑎𝑑𝑠)𝑖 is the heat of 

adsorption of component 𝑖.  

The heat transfer through the wall is described as: 

𝜌𝑤𝐶̂𝑝,𝑤
𝜕𝑇𝑤
𝜕𝑡

= 𝛼𝑤ℎ𝑤(𝑇𝑔 − 𝑇𝑤) − 𝛼𝑤𝑙𝑈(𝑇𝑤 − 𝑇∞) (8) 



 

 

     

 

where 𝑇∞ is the external temperature, 𝜌𝑤  is the wall density, 

𝐶̂𝑝,𝑤 is the wall specific heat per mass unit, 𝑈 is the overall 

heat transfer coefficient and  𝑒 is the wall thickness. 

𝜶𝒘 and 𝜶𝒘𝒍 are defined as: 

𝛼𝑤 =
𝑑𝑤𝑙

𝑒(𝑑𝑤𝑙 + 𝑒)
 (9) 

𝛼𝑤𝑙 =
2

(𝑑𝑤𝑙 + 𝑒) 𝑙𝑛 (
𝑑𝑤𝑙 + 2𝑒
𝑑𝑤𝑙

)
 

(10) 

 

The unit here presented considers 4 steps. The boundary 

conditions for each step of the PSA process  are given in Table 

2 . 

Table 2 - Model boundary conditions. 

Pressurization with feed 

z = 0, inlet z = L  

𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑖

= 𝑢0𝐶𝑔,𝑖 − 𝜀𝐷𝑎𝑥𝐶𝑔,𝑇
𝜕𝑦𝑖
𝜕𝑧

 

𝜕𝐶𝑔,𝑖

𝜕𝑧
= 0 

𝑃 = 𝑃𝑖𝑛𝑙𝑒𝑡  𝑢0 = 0 

𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇𝐶𝑝𝑇𝑖𝑛𝑙𝑒𝑡

= 𝑢0𝐶𝑔,𝑇𝐶𝑝𝑇𝑔 − 𝜆
𝜕𝑇𝑔

𝜕𝑧
 

𝜕𝑇𝑔

𝜕𝑧
= 0 

Feed 

z = 0, inlet z = L, outlet 

𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑖

= 𝑢0𝐶𝑔,𝑖 − 𝜀𝐷𝑎𝑥𝐶𝑔,𝑇
𝜕𝑦𝑖
𝜕𝑧

 

𝜕𝐶𝑔,𝑖

𝜕𝑧
= 0 

𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇 = 𝑢0𝐶𝑔,𝑇 𝑃 = 𝑃𝑜𝑢𝑡𝑙𝑒𝑡  

𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇𝐶𝑝𝑇𝑖𝑛𝑙𝑒𝑡

= 𝑢0𝐶𝑔,𝑇𝐶𝑝𝑇𝑔 − 𝜆
𝜕𝑇𝑔

𝜕𝑧
 

𝜕𝑇𝑔

𝜕𝑧
= 0 

Counter-current blowdown 

z = 0, outlet z = L 

𝜕𝐶𝑔,𝑖

𝜕𝑧
= 0 

𝜕𝐶𝑔,𝑖

𝜕𝑧
= 0 

𝑃 = 𝑃𝑜𝑢𝑡𝑙𝑒𝑡  𝑢0 = 0 

𝜕𝑇𝑔

𝜕𝑧
= 0 

𝜕𝑇𝑔

𝜕𝑧
= 0 

Purge 

z = 0, outlet z = L, inlet 

𝜕𝐶𝑔,𝑖

𝜕𝑧
= 0 

𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑖

= 𝑢0𝐶𝑔,𝑖 − 𝜀𝐷𝑎𝑥𝐶𝑔,𝑇
𝜕𝑦𝑖
𝜕𝑧

 

𝑃 = 𝑃𝑜𝑢𝑡𝑙𝑒𝑡  𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇 = 𝑢0𝐶𝑔,𝑇 

𝜕𝑇𝑔

𝜕𝑧
= 0 

𝑢0𝑖𝑛𝑙𝑒𝑡𝐶𝑖𝑛𝑙𝑒𝑡,𝑇𝐶𝑝𝑇𝑖𝑛𝑙𝑒𝑡

= 𝑢0𝐶𝑔,𝑇𝐶𝑝𝑇𝑔 − 𝜆
𝜕𝑇𝑔

𝜕𝑧
 

2.2 Linear Models Identification 

In Nogueira et al., (2020(2)) is presented a methodology for 

the optimization of PSA units concomitantly with the 

determination of the uncertainty associated with the optimal 

point. The referred work proposes an optimal operating region, 

instead of an optimal point. These regions can be translated 

into linear models to be used in plant representations in the 

RIHMPC. This procedure opens doors to different practical 

applications of the optimal operating regions proposed in the 

referred work. 

In the referred work, the authors performed the optimization 

of the PSA unit studied here. The obtained optimal conditions 

are presented in Figure 1. 

 

Fig. 1. Optimal operating region, adapted from Nogueira et al., 

(2020). Each region represents a set of possible obptimal 

operating conditions, where is possible to operate the process 

keeping the optimal conditions and constraints. 

From Figure 1, it can be seen that a wide range of possible 

optimal conditions can be found where it is  efficient  to 

operate the process. That region could hardly be represented 

solely by a linear model. However, in the scenario where a 

RIHMPC is used, that region can be divided into subregions 

and, therefore, multi-models can be identified for each region. 

In the present case, three subregions were defined, two in each 

extreme of the optimal area and one in its center. Then, the 

phenomenological model was used to operate in each of these 

conditions. Thus, it is possible to identify linear transfer 

functions for each condition using the reaction curve approach 

(Seborg et al., 2003). Over the cyclic steady state of each 



 

 

     

 

operating condition, it was done a step disturbance of ten 

percent in each input variable separately. The model response 

was then used to identify the transfer functions. The sets of 

manipulated/controlled variables were chosen in accordance 

with the literature (Regufe et al. 2015). As it is known that the 

syngas stream will feed a Fischer−Tropsch, the H2/CO ratio is 

an important parameter to be controlled. Furthermore, the CO2 

purity and the CO2 recovery were also used as controlled 

variables. As manipulated variables, it was selected the feed 

step duration, the purge step duration and the rinse step 

duration. The controlled variables are computed by the 

phenomenological model as: 

𝐻2
𝐶𝑂

=
∫ 𝐶𝐻2
𝑡𝑓𝑒𝑒𝑑

0
𝑢0|𝑧=𝐿 + ∫ 𝐶𝐻2

𝑡𝑟𝑖𝑛𝑠𝑒

0
𝑢0|𝑧=𝐿

∫ 𝐶𝐶𝑂
𝑡𝑓𝑒𝑒𝑑

0
𝑢0|𝑧=𝐿 + ∫ 𝐶𝐶𝑂

𝑡𝑟𝑖𝑛𝑠𝑒

0
𝑢0|𝑧=𝐿

 (12) 

𝑃𝑢𝑟𝐶𝑂2 = 

∫ 𝐶𝐶𝑂2
𝑏𝑙𝑜𝑤

0
𝑢0|𝑧=0𝑑𝑡 + ∫ 𝐶𝐶𝑂2

𝑝𝑢𝑟𝑔𝑒

0
𝑢0|𝑧=0𝑑𝑡

∑ [ ∫ 𝐶𝑖
𝑡𝑏𝑙𝑜𝑤

0
𝑛
𝑖=1 𝑢0|𝑧=0𝑑𝑡 + ∫ 𝐶𝑖

𝑡𝑝𝑢𝑟𝑔𝑒

0
𝑢0|𝑧=0𝑑𝑡 ]

 

(13) 

𝑅𝑒𝑐𝐶𝑂2

=
∫ 𝐶𝐶𝑂2
𝑡𝑏𝑙𝑜𝑤
0

𝑢0|𝑧=0𝑑𝑡 + ∫ 𝐶𝐶𝑂2
𝑡𝑝𝑢𝑟𝑔𝑒
0

𝑢0|𝑧=0𝑑𝑡 − ∫ 𝐶𝐶𝑂2
𝑡𝑟𝑖𝑛𝑠𝑒
0

𝑢0|𝑧=0𝑑𝑡 

∫ 𝐶𝐶𝑂2
𝑡𝑝𝑟𝑒𝑠𝑠
0

𝑢0|𝑧=0𝑑𝑡 + ∫ 𝐶𝐶𝑂2
𝑡𝑓𝑒𝑒𝑑
0

𝑢0|𝑧=0𝑑𝑡
 (14) 

 

2.3 Robust Model Predictive Control 

This work  employs the robust MPC proposed by Odloak, 

(2004), an extension of the work by (Badgwell, 1997) to the 

output tracking case through a one-step formulation by 

considering a state-space model in the incremental form of 

inputs obtained from an analytical expression of the step-

response of the system, as well as its guarantee of feasibility 

for realistic plant/model mismatch by suitable inclusion of a 

set of slack variables (𝛿𝑦), aiming at the enlargement of the 

domain of attraction of the controller. Therefore, the 

optimization problem to be solved in the RIHMPC control law 

at time step k is expressed as: 

𝑚𝑖𝑛
𝛥𝑢𝑘,𝛿𝑦,𝑘(𝛩𝑛=1,…,𝐿)

𝑉𝑘(𝛩𝑁), 

𝑉𝑘(𝛩𝑁) =∑ ‖𝑦𝑁(𝑘 + 𝑗|𝑘) − 𝑦𝑠𝑝,𝑘 − 𝛿𝑦,𝑘(𝛩𝑁)‖𝑄𝑦

2𝑚

𝑗=0
+

+‖𝑥𝑁
𝑑(𝑘 + 𝑚|𝑘)‖

𝑄̄(𝛩𝑁)

2
+

+∑ ‖𝛥𝑢(𝑘 + 𝑗|𝑘)‖𝑅
2

𝑚−1

𝑗=0
+ ‖𝛿𝑦,𝑘(𝛩𝑁)‖𝑆𝑦

2
 

(15a) 

s.t.:  

𝑥𝑛
𝑠(𝑘 +𝑚|𝑘) − 𝑦𝑠𝑝,𝑘 − 𝛿𝑦,𝑘(𝛩𝑛) = 0, 

 𝑛 = 1, . . . , 𝐿 
(15b) 

𝑄(𝛩𝑛) = 𝐹
𝑇(𝛩𝑛)𝛹

𝑇𝑄𝑦𝛹𝐹(𝛩𝑛)+ 

+𝐹𝑇(𝛩𝑛)𝑄(𝛩𝑛)𝐹(𝛩𝑛),  

𝑛 = 1, . . . , 𝐿 

(15c) 

𝑉𝑘(𝛩𝑛) ≤ 𝑉̃𝑘(𝛩𝑛), 𝑛 = 1, . . . , 𝐿 (15d) 

𝛥𝑢𝑘 = [𝛥𝑢(𝑘|𝑘)
𝑇 …  𝛥𝑢(𝑘 + 𝑚 − 1|𝑘)𝑇]𝑇 ∈ 𝑈 (15e) 

𝑈 =

{
 
 

 
 

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘 + 𝑗|𝑘) ≤ ∆𝑢𝑚𝑎𝑥
∆𝑢(𝑘 + 𝑗|𝑘) = 0, ∀ 𝑗 ≥ 𝑚

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 − 1) +∑∆𝑢(𝑘 + 1𝑖|𝑘)

𝑗

𝑖=1

≤ 𝑢𝑚𝑎𝑥
}
 
 

 
 

 (15f) 

where 𝑚 is the control horizon, 𝑄𝑦, 𝑅 and 𝑆𝑦 are weighting 

matrices (tuning parameters) of the controller. 𝛺 =
{𝛩1 , . . . , 𝛩𝐿} is a set that contemplates possible operating 

conditions identified by the optimization, as given in figure 1, 

𝛩𝑛denotes a particular operating condition of the plant, i.e 

𝛩𝑛 = {𝐹𝑛, 𝐵𝑛
𝑠 , 𝐵𝑛

𝑑 ., 𝑛 = 1, . . . , 𝐿}. The most likely model, the 

nominal, is referred here as 𝛩𝑁. Even though the objective 

function is based on a nominal model, Eq. (15d) represents a 

constraint that is imposed on all the models of 𝛺, in a way to 

assure the controller robustness. Assuming that 𝛥𝑢𝑘−1
∗  is the 

optimal solution of Eq. (11a) at step 𝑘 − 1, 𝑉̃𝑘 is calculated 

with an inherited solution at time step k-1, i.e.: 

𝛥𝑢̃𝑘 = [𝛥𝑢
∗ (𝑘|𝑘 − 1)𝑇, … , 𝛥𝑢∗ (𝑘 +𝑚 − 2|𝑘 − 1)𝑇 0𝑇]𝑇 (16) 

The pseudo-slack variables 𝛿𝑦,𝑘(𝛩𝑛=1,…,𝐿) are such that: 

𝑥𝑛
𝑠(𝑘 + 𝑚|𝑘) − 𝑦𝑠𝑝,𝑘 − 𝛿𝑦,𝑘(𝛩𝑛) = 0, 𝑛 = 1, . . . , 𝐿 (17) 

The use  of the pseudo-slack variables 𝛿𝑦,𝑘(𝛩𝑛=1,…,𝐿) is done 

to accommodate the feedback information of the output 𝑦(𝑘) 
to all the models in 𝛺.  

4.  RESULTS AND DISCUSSION 

The PSA phenomenological model was implemented in 

gPROMS. To solve the system of partial differential equations, 

it was used the  Orthogonal Collocation in Finite Elements 

Method (OCFEM) with second-order polynomials in a grid of 

150 uniform intervals  to perform the spatial discretization of 

the PDEs which were then solved with DASOLV using a third 

order orthogonal collocation method (OCFEM). The 

identification of the linear model was done through MATLAB 

2020b, using a gO:MATLAB, an FPI (Foreign Process 

Interface) event. The simulations were run in a processor 

Intel® Core™ i5-2400 with a 3.10 GHz CPU. The RAM had 

an 8.00 GB capacity. The operating conditions are listed in 

Table 3. 

Table 3 - Operating conditions for the PSA unit simulated 

by the phenomenological model. 

Bed length (m) 0.323 

Bed diameter (m) 0.021 

Bed porosity 0.35 

Mass of adsorbent (kg) 0.0402 

Thermocouple position (m) 0.081/0.191/0.300 

 



 

 

     

 

Particle radius (mm) 2.00 

Crystal radius (µm) 0.6 

Solid density (kg m-3) 1450 

Apparent particle density (kg m-3) 550 

Feed flow rate (SLPM) 0.43 

Feed composition (%) 30%CO2 ; 22% CO ; 

48% H2 

For each selected operating condition point shown in Figure 1, 

a model was identified by the described methodology. Table 4 

shows the values of the input variables for each operating 

condition. In  Appendix A, are presented the transfer functions 

obtained to represent the relationship between the length of the 

steps: feed (tfeed), purge (tpurge), rinse (trinse); and the PSA 

performance parameters: H2/CO ratio, CO2 purity, CO2 

recovery as output variables of the transfer functions models.  

 

Table 4 - Operating conditions assumed for the 

development of the transfer function models. 

 Operating conditions 

 1 2 3 

tfeed (s) 463.32 529.37 527.22 

tpurge (s) 103.85 87.87 87.87 

trinse (s) 223.67 205.32 175.74 

  

In order to evaluate the performance of the controller, a 

simulation was done. The RIHMPC tuning parameters related 

to the outputs were equal to 𝑄𝑦 = [10 5 10] and 𝑆𝑦 =

[107 107 107] for the ratio, purity and recovery respectively 

and 𝑅 = [1 10 1].  The duration of the simulation was 200 

cycles. The performance of the controller was evaluated for the 

output tracking scenario. In the first test, the controller was 

activated after the plant reached its cyclic steady state. After 

20 cycles, one unmeasured perturbance was added, 

corresponding to 5% of the feed step duration in order to 

evaluate the regulatory performance of the RIHMPC. After 

that, three setpoint changes were done in order to evaluate the 

performance of the control system during the transition 

between operating conditions. As the simulation is set on the 

operating condition 2, the chosen nominal model is the one 

obtained from that condition whereas the plant is simulated by 

the model corresponding to the operating condition 3, 

described in Figure 1. The nominal was chosen in order to 

assure that there will be a plan/model mismatch, providing a 

better evaluation of the robust performance of the RIHMPC. 

Figure 2 shows the simulation results.  

It is possible to verify in Figure 2 that the controller was able 

to drive the process to its setpoint during the output tracking 

simulation. Furthermore, in the regulatory case, the control 

was able to bring the controlled variables to the required 

setpoint. In most of the cases, the controller was able to 

stabilize the system in less than 5 cycles, though it required 

considerable time, about 10 cycles, in the ratio control for the 

last scenario evaluated. This can be a consequence of the trade-

off inherent to using a robust controller: as the optimization 

problem must consider more information to be solved, it finds 

conservative control action values. Consequently, more time is 

required for the controller to track the setpoint for the 

controlled variables. On the other hand, the controller tunning 

could be further investigated in other to optimize its 

performance. 

 

 

 

Figure 2 – Process operation for 100 cycles controlled by 

the proposed  RIHMPC. Set of controlled variables, with 

their setpoints, and manipulated variables, with their 

respective ranges. 

5. CONCLUSIONS 

This work presented a Robust stabilizing infinite-horizon 

model predictive controller (RIHMPC) applied in the control 

of a Pressure Swing Adsorption unit where the syngas 

purification is processed. The identification of linear models 

in a multi-plant approach was presented. This was based on the 

uncertainty evaluation of the unit optimal operating point, 

which was previously proposed in the literature. The 

developed controller was tested in a nominal scenario with 

plant-model mismatch. It was possible to verify that, in both 

output tracking and regulatory cases, the RIHMPC was able to 

efficiently keep the process on its setpoints. 
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Appendix A. Identified models from the nonlinear phenomenological model simulated in gProms. 

Table A.I - Transfer functions identified for operating conditions 1. 

 Ratio H2/CO CO2 purity CO2 recovery 

tfeed −0.00071232

1 + 2 ∗ 4.9282 ∗ 0.0785 ∗ 𝑠 + (0.0785 ∗ 𝑠)2
 

0.032042

1 + 0.039298 ∗ 𝑠
 

−0.017768

1 + 0.86694 ∗ 𝑠
 

tpurge 0.00073921(1 + 7.4772 ∗ 𝑠)

1 + 2 ∗ 1.1882 ∗ 0.24203 ∗ 𝑠 + (0.24203 ∗ 𝑠)2
 

−0.1559

1 + 2 ∗ 1.1573 ∗ 0.29997 ∗ 𝑠 + (0.29997 ∗ 𝑠)2
 

−0.0049113

1 + 2 ∗ 1.5727 ∗ 0.23829 ∗ 𝑠 + (0.23829 ∗ 𝑠)2
 

trinse −0.0024076

1 + 2 ∗ 2.9777 ∗ 0.14448 ∗ 𝑠 + (0.14448 ∗ 𝑠)2
 

0.11894

1 + 0.033927 ∗ 𝑠
 

−0.031047

1 + 2 ∗ 1.214 ∗ 0.30397 ∗ 𝑠 + (0.30397 ∗ 𝑠)2
 

Table A.II - Transfer functions for the operating conditions 2. 

 Ratio H2/CO CO2 purity CO2 recovery 

tfeed −0.00060259

1 + 2 ∗ 2.6735 ∗ 0.11552 ∗ 𝑠 + (0.11552 ∗ 𝑠)2
 

0.025335

1 + 0.032993 ∗ 𝑠
 

−0.038022

1 + 0.86165 ∗ 𝑠
 

tpurg

e 

0.0008318(1 − 3.9842 ∗ 𝑠)

1 + 2 ∗ 0.62231 ∗ 0.13654 ∗ 𝑠 + (0.13654 ∗ 𝑠)2
 

−0.14465

1 + 2 ∗ 31.696 ∗ 0.037613 ∗ 𝑠 + (0.037613 ∗ 𝑠)2
 

0.086203

1 + 0.84253 ∗ 𝑠
 

trinse −0.002189

1 + 2 ∗ 2.3997 ∗ 0.13456 ∗ 𝑠 + (0.13456 ∗ 𝑠)2
 

0.11006

1 + 0.047108 ∗ 𝑠
 

−0.0074785

1 + 2 ∗ 19.639 ∗ 0.02456 ∗ 𝑠 + (0.02456 ∗ 𝑠)2(1 + 250.91 ∗ 𝑠)
 

Table A.III - Transfer functions identified for the operating conditions 3. 
 Ratio H2/CO CO2 purity CO2 recovery 

tfeed 
−0.00091123

1 + 2 ∗ 2.8731 ∗ 0.1433 ∗ 𝑠 + (0.1433 ∗ 𝑠)2
 

0.031692

1 + 0.040094 ∗ 𝑠
 

−0.030928

1 + 0.79018 ∗ 𝑠
 

tpurge 
0.0009339(1 + 8.4278 ∗ 𝑠)

1 + 2 ∗ 1.3415 ∗ 0.22222 ∗ 𝑠 + (0.22222 ∗ 𝑠)2
 

−0.16059

1 + 2 ∗ 0.72784 ∗ 0.32545 ∗ 𝑠 + (0.32545 ∗ 𝑠)2
 

0.03672

1 + 0.74955 ∗ 𝑠
 

trinse 
−0.002854

1 + 2 ∗ 2.9096 ∗ 0.14259 ∗ 𝑠 + (0.14259 ∗ 𝑠)2
 

0.12764

1 + 0.059151 ∗ 𝑠
 

 

−0.020437

1 + 0.85897 ∗ 𝑠
 

 


