Borja, P., Cisneros, R., and Ortega, R. (2016). A constructive procedure for energy shaping of port-Hamiltonian systems. Automatica, 72, 230--234. Casta{\~{n}}os, F., Ortega, R., van~der Schaft, A., and Astolfi, A. (2009). Asymptotic stabilization via control by interconnection of port-Hamiltonian systems. Automatica, 45(7), 1611--1618. Dirksz, D.A. and Scherpen, J.M. (2012). Power-based control: Canonical coordinate transformations, integral and adaptive control. Automatica, 48(6), 1045--1056. Donaire, A. and Junco, S. (2009). On the addition of integral action to port-controlled Hamiltonian systems. Automatica, 45(8), 1910--1916. Donaire, A., Mehra, R., Ortega, R., Satpute, S., Romero, J.G., Kazi, F., and Singh, N.M. (2016). Shaping the energy of mechanical systems without solving partial differential equations. IEEE Transactions on Automatic Control, 61(4), 1051--1056. D{\"{o}}rfler, F., Johnsen, J.K., and Allg{\"{o}}wer, F. (2009). An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control, 19(9), 1413--1426. Ferguson, J., Donaire, A., and Middleton, R.H. (2017). Integral Control of Port-Hamiltonian Systems : Nonpassive Outputs Without Coordinate Transformation. IEEE Transactions on Automatic Control, 62(11), 5947--5953. Fujimoto, K., Sakai, S., and Sugie, T. (2012). Passivity based control of a class of Hamiltonian systems with nonholonomic constraints. Automatica, 48(12), 3054--3063. Guay, M. and Hudon, N. (2016). Stabilization of nonlinear systems via potential-based realization. IEEE Transactions on Automatic Control, 61(4), 1075--1080. Khalil, H. (2002). Nonlinear Systems. Prentice Hall, Upper Saddle River, New Jersey, 3rd edition. Liu, Z., Ortega, R., and Su, H. (2010). Stabilisation of nonlinear chemical processes via dynamic power-shaping passivity-based control. International Journal of Control, 83(7), 1465--1474. Nguyen, T.S., Hoang, N.H., and Hussain, M.A. (2018). Tracking error plus damping injection control of non-minimum phase processes. IFAC-PapersOnLine, 51(18), 643--648. Nguyen, T.S., Hoang, N.H., Hussain, M.A., and Tan, C.K. (2019). Tracking-error control via the relaxing port-Hamiltonian formulation: Application to level control and batch polymerization reactor. Journal of Process Control, 80, 152--166. Ortega, R., van der Schaft, A., Maschke, B., and Escobar, G. (2002). Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica, 38, 585--596. Ortega, R., van~der Schaft, A., Casta{\~{n}}os, F., and Astolfi, A. (2008). Control by interconnection and standard passivity-based control of port-Hamiltonian systems. IEEE Transactions on Automatic Control, 53(11), 2527--2542. Ramirez, H., Maschke, B., and Sbarbaro, D. (2013). Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science, 89, 223--234. Ram{\'{i}}rez, H., Sbarbaro, D., and Ortega, R. (2009). On the control of non-linear processes: An IDA-PBC approach. Journal of Process Control, 19(3), 405--414. Ryalat, M. and Laila, D.S. (2018). A robust IDA-PBC approach for handling uncertainties in underactuated mechanical systems. IEEE Transactions on Automatic Control, 63(10), 3495--3502. van der Schaft, A. (2017). $\mathcal{L}_2$-Gain and Passivity Techniques in Nonlinear Control. Springer, 3rd edition.