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Abstract: This paper considers the problem of state feedback controller design to stabilize
generalized Hamiltonian systems with an unstructured component. This class of models enable
one to exploit the structure of port-Hamiltonian systems for feedback control design while
relaxing the constraint of deriving an exact structured port-Hamiltonian representation. For a
given stabilizable nonlinear system, and with some assumptions on the unstructured part of the
dynamics, a stabilizing control law is designed and asymptotic stability of a desired equilibrium
of the system is demonstrated. A numerical illustration of the proposed approach is presented
to demonstrate the design method.
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1. INTRODUCTION

The port-Hamiltonian (pH) structure is practical to de-
scribe a wide range of dynamical system including chemi-
cal processes. This structure gives a clear relation between
the dynamics and the energy of the system. For mechanical
systems, the Hamiltonian function in pH systems is the
total energy and can be used as a Lyapunov function
for the system (van der Schaft, 2017). One issue when
applying this approach for chemical process systems is to
represent mass and energy dynamics as generalized Hamil-
tonian systems (see for example Ramirez et al. (2013)).
Another problem is to design a suitable controller via
different techniques for this class of systems, a problem
investigated by many researchers (Ortega et al., 2008;
Dörfler et al., 2009; Ramı́rez et al., 2009; Donaire and
Junco, 2009; Castaños et al., 2009). Finding a suitable
feedback law to shape the Hamiltonian dynamics of a
given system requires the solution of a system of matching
Partial Differential Equations (PDEs). For static state
feedback controller design, proposed techniques from the
literature solving the matching and non-matching PDE
equations are generally based on control via interconnec-
tion (Ortega et al., 2008; Castaños et al., 2009), power
shaping (Liu et al., 2010; Dirksz and Scherpen, 2012), and
energy shaping through Interconnection-Damping Assign-
ment (IDA-PBC) (Dörfler et al., 2009; Ramı́rez et al.,
2009). Generalized canonical transformation is a way to
change the pH system without changing the inherent
property of the system. This approach has been shown to
simplify the feedback controller design but still needs the
solution of PDEs in the transformation process (Fujimoto
et al., 2012).
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The controller design problem was further developed by
extending the system dynamics in a closed loop that
is conceptually equal to the PI controllers. This helps
to stabilize the system more efficiently, especially in the
presence of disturbance or uncertainties. Some researchers
demonstrated that by having the solution to the match-
ing equations, integral action can improve the control
performance to reject disturbance while preserving the
Hamiltonian structure (Donaire and Junco, 2009; Ryalat
and Laila, 2018). The dynamic extension approach has also
been applied to the power shaping control of pH systems
(Liu et al., 2010). In (Nguyen et al., 2019), some results are
obtained to stabilize the system at the desired equilibrium
by explicitly defining a reference dynamics that is different
from the actual dynamics and then designing an stabilizing
dynamic controller to derive the errors to the origin. It was
even illustrated that the PDE solution could be relaxed
by abandoning the objective of preservation in the closed-
loop of the pH structure, which is the condition that gives
rise to the PDEs (Donaire et al., 2016; Borja et al., 2016).
However, in most cases, a clear pH representation of the
system is required. An approach to the approximate rep-
resentation problem for the stabilization of control affine
systems is presented in (Guay and Hudon, 2016) without
using port-Hamiltonian systems theory for control design.

In the present contribution, we are interested in repre-
senting a control affine system as the combination of a
structured dynamical component (a port-Hamiltonian sys-
tem) and an unstructured dynamical component. Under
mild assumptions on the unstructured part, the objective
is to design a controller, using the structured part of
the dynamics, stabilizing the overall system at a desired
equilibrium. The noticeable advancement here, contrary
to the conventional approaches, is that we avoid solving
PDEs in designing the controller, while using information
on the structured part of the dynamics to find a simpler



controller. Results show that the proposed controller has a
good performance and is powerful enough to stabilize the
trajectories at desired equilibrium points. This approach
is valuable for systems derived from balance laws, as a
port-Hamiltonian representation for this class of systems
is usually difficult to obtain in general.

The paper is organized as follows. In section 2, background
material is briefly reviewed and the stabilizing control
problem for port-Hamiltonian systems is formulated. In
Section 3, a stabilizing control for the system is designed
and stability of the systems in closed-loop with the pro-
posed controller is proved. In Section 4, the van de Vusse
reacting system is studied and numerical simulations are
given to illustrate the application of the proposed ap-
proach. Conclusions and areas for further investigations
are discussed in Section 5.

2. BACKGROUND AND PROBLEM FORMULATION

2.1 Port-Hamiltonian Systems

We consider control affine systems of the form

ẋ = F (x) +G(x)u, (1)

where x ∈ D ⊂ Rn and u ∈ Rm. Throughout the present
note, we assume the following.

Assumption 1. The control affine system (1) is stabilizable
at a point x∗, i.e., the following expression holds:

span{f(x), adfG(x), · · · ,adkfG(x) |
∀x ∈ D\{x∗}, k ∈ Z+} = Rn.

(2)

Following (van der Schaft, 2017), it is possible to express
the system (1) as a standard port-Hamiltonian system
with dissipation

ẋ = [J(x)−R(x)]∇H(x) +G(x)u, (3)

where x ∈ D ⊂ Rn expressing the states and u ∈ Rm is the
input signal. The function H : Rn → R is the Hamiltonian
function, J(x) is a skew-symmetric structure matrix, and
R(x) is a positive definite symmetric matrix. The notation
∇H(x) denotes the vector ∂H

∂x = [ ∂H∂x1
· · · ∂H∂xn

]T .

An interesting property of this class of systems is that the
Hamiltonian function H(x) can play the role of Lyapunov
function for stability analysis (Ortega et al., 2002), i.e.,
if H(x) admits a strict minimum at x∗ = 0, then x∗ is a
stable equilibrium of the unforced systems

ẋ = [J(x)−R(x)]∇H(x). (4)

Usually, the control input can be used to shape the
Hamiltonian function H(x) → Hd(x) (and eventually to
inject additional damping R(x)→ Rd(x)) such that under
a proper feedback u = α(x), the closed loop system has
the Hamiltonian structure, i.e.,

[J(x)−R(x)]∇H(x)+G(x)u = [J(x)−Rd(x)]∇Hd(x) (5)

and Hd(x) admits a strict minimum at a desired equi-
librium x∗. This is the problem that has been widely
addressed in the literature and many applications are
discussed (Ramı́rez et al., 2009; Dörfler et al., 2009) but
requires the solution of a set of PDE equations, the match-
ing equations, to obtain an exact port-Hamiltonian system
in closed-loop.

In the present note, we depart from this approach and
consider control affine systems expressed as approximated
port-Hamiltonian systems, i.e., we consider that the con-
trol affine system (1) can be written as

ẋ = [J(x)−R(x)]∇H(x) + Ψ(x) +G(x)u, (6)

where the properties of the unstructured part of the
dynamics Ψ(x) are to be established below.

2.2 Problem formulation

We consider control affine systems (1) and assume that the
system is stabilizable following Assumption 1. The original
system is re-expressed in the form (6). This can be achieved
in practice since the unstructured part of the dynamics
Ψ(x) can be fixed as desired by the user. In general, the
structured part of dynamics can be made as desired. This
is formalized in the following assumption.

Assumption 2. The Hamiltonian function in system (6) is
assumed to be a quadratic function of the state variables
with the unique minimum at the origin, i.e.,H(x) = 1

2x
Tx.

The approximate representation of control affine systems
as port-Hamiltonian systems is obviously not unique. In
the sequel, we demonstrate that the proposed representa-
tion can still be exploited in the derivation of a suitable
state feedback stabilizing control law, under mild assump-
tions on the unstructured part of the dynamics Ψ(x).

As the analysis shows in the next Section, the key assump-
tion is that the system (6) (equivalently system (1)) is
locally stabilizable. Moreover, we make the following as-
sumption of the unstructured component of the dynamics
Ψ(x).

Assumption 3. The unstructured vector Ψ(x) has Lips-
chitz property in x and meets the inequality

‖Ψ(x)‖ ≤ q(x)‖R(x)∇H(x)‖ ∀x ∈ D\{x∗}, (7)

where D ⊂ Rn is a domain of interest centered at the
origin and the state-dependent bound is bounded locally
by a constant, i.e., q(x) ≤ q on D.

In other words, the contribution of the unstructured part
of the dynamics must be bounded by the natural dissi-
pation of the system, encoded in the structured part of
the dynamics. As stabilization analysis of (exact) port-
Hamiltonian systems is based on the dissipation of the
system, a natural extension in our context is to relate the
unstructured part of the dynamics to the dissipation rate
of the structured part of the dynamics.

3. STABILIZING CONTROLLER DESIGN

3.1 Stabilizing at nonzero steady state

We design a control law to move the trajectories to
desired equilibrium x∗. For completeness of the analysis we
consider the more general case in which the system is not
fully actuated. Hence, we split the system state variables x
into actuated (xa) and non-actuated (xna) state variables.
Subsequently, all the operators would be regrouped in
two sets. For the actuated and non-actuated parts, the
operators and vector functions are sub-scripted by 1 and 2,
respectively. Actuated and non-actuated matrix elements
are denoted by 11 and 22, respectively. We also denote the



state vector as x = [xa, xna]T . Using this notation, we can
rewrite the dynamics (6) as[

ẋa
ẋna

]
=

[
J11(x)−R11(x) J12(x)
−JT21(x) J22(x)−R22(x)

] [
∇H(xa)
∇H(xna)

]
+

[
Ψ1(x)
Ψ2(x)

]
+

[
g(x)

0

]
u,

(8)

such that J12(x) 6= 0. Note that based on Assumption 2,
the Hamiltonian function H(x) = H1(xa) + H2(xna) =
1
2 (xTa xa + xTnaxna). Furthermore, Assumption 3 can be re-
written as follows:∥∥∥∥[Ψ1(x)

Ψ2(x)

]∥∥∥∥ < q(x)

∥∥∥∥[ R11(x)∇H1(xa)
R22(x)∇H2(xna)

]∥∥∥∥ (9)

We do not use the unstructured component in development
of the controller but we use this information for stability
analysis. We consider the Hamiltonian function H(x) =
1
2x

Tx, hence, ∇H(x) = x. Since the equilibrium can be
a nonzero state, we shift the Hamiltonian function such
that it has a local minimum at x∗. Hence, the Hamiltonian
function is re-expressed as

H(x− x∗) = 1
2 (x− x∗)T (x− x∗) (10)

In the sequel, we design a dynamic controller of the form

u(x,x∗, ξ) = α(x,x∗) +KI(x)ξ

ξ̇ = −KI(x)T gT (x)(xa − x∗a),
(11)

where KI can be a constant or state dependent positive
matrix. The extended dynamic variables ξ ∈ Rm. The
following Proposition states and proves the asymptotic
stability of the system (6) at desired equilibrium x∗ when
we add the integral action to the system.

Proposition 4. Consider the port-Hamiltonian system with
unstructured component (6) interconnected in closed-loop
with controller (??), where

α(x,x∗) = [g(x∗)T g(x)]−1[−g(x∗)T (A+KpR11xa)

+ g(x∗)T g(x∗)u∗],

where Kp is positive square constant gain matrix in Rn×n,
A = [∆J11 − ∆R11]xa + [J12(x) − J12(x∗)]xna, ∆J11 =
J11(x)− J11(x∗), and ∆R11 = R11(x)−R11(x∗).

Under Assumption 1, 2, and 3, the desired equilibrium x∗

is asymptotically stable.

Proof. We consider the Lyapunov function

V (x,x∗, ξ) = 1
2 (x− x∗)T (x− x∗) + 1

2ξ
T ξ.

Taking the time derivative, we have

V̇ (x,x∗, ξ) = (x− x∗)T (ẋ− ẋ∗) + ξT ξ̇

We denote δx = x−x∗ for each actuated and non-actuated
states. Considering quadratic property of Hamiltonian
function, we have

[
ẋa − ẋ∗a
ẋna − ẋ∗na

]
=

[
J11(x)−R11(x) J12(x)
−JT21(x) J22(x)−R22(x)

] [
xa
xna

]
+

[
Ψ1(x)
Ψ2(x)

]
+

[
g(x)
0

]
u

−
[
J11(x∗)−R11(x∗) J12(x∗)

−JT21(x∗) J22(x∗)−R22(x∗)

] [
x∗a
x∗na

]
−
[

Ψ1(x∗)
Ψ2(x∗)

]
−
[
g(x∗)
0

]
u∗

=

[
J11(x∗)−R11(x∗) J12(x∗)

−JT21(x∗) J22(x∗)−R22(x∗)

] [
δxa
δxna

]
+

[
∆J11 −∆R11 J12(x)− J12(x∗)

−[JT21(x)− JT21(x∗)] ∆J22 −∆R22

] [
xa
xna

]
+

[
Ψ1(x)−Ψ1(x∗)
Ψ2(x)−Ψ2(x∗)

]
+

[
g(x)
0

]
u−
[
g(x∗)
0

]
u∗

Interconnection of this equation with dynamic controller
(11) gives[

ẋa − ẋ∗a
ẋna − ẋ∗na

ξ̇

]
=[

J11(x∗)−R11(x∗) J12(x∗) g(x)KI
−JT21(x∗) J22(x∗)−R22(x∗) 0
−KT

I g
T (x) 0 0

][
δxa
δxna
ξ

]

+

[
∆J11 −∆R11 J12(x)− J12(x∗) 0

−[JT21(x)− JT21(x∗)] ∆J22 −∆R22 0
0 0 0

][
xa
xna
0

]

+

[
Φ1(x,x∗)
Φ2(x,x∗)

0

]
+

[
g(x)
0
0

]
α(x,x∗)−

[
g(x∗)
0
0

]
u∗.

(12)

where Φi(x,x
∗) = Ψi(x)−Ψi(x

∗) is the new unstructured
dynamic. We have

V̇ (x,x∗, ξ) = δxTa [J11(x∗)−R11(x∗)]δxa

+ δxTa J12(x∗)δxna − δxTnaJ12(x∗)δxa

+ δxTna[J22(x∗)−R22(x∗)]δxna

+ δxTa [∆J11 −∆R11]xa + δxTa [J12(x)− J12(x∗)]xna

− δxTna[JT21(x)− JT21(x∗)]xa + δxTna[∆J22 −∆R22]xna

+ δxTaΦ1(x,x∗) + δxTnaΦ2(x,x∗)

+ δxTa g(x)α(x,x∗)

+ δxTa g(x)KI(x)ξ − ξT gT (x)KI(x)T δxa − δxTa g(x∗)u∗.

Canceling some terms we obtain,

V̇ (x,x∗, ξ) = −δxTaR11(x∗)δxa − δxTnaR22(x∗)δxna

+ δxTa [∆J11 −∆R11]xa + δxTa [J12(x)− J12(x∗)]xna

− δxTna[JT21(x)− JT21(x∗)]xa + δxTna[∆J22 −∆R22]xna

+ δxTaΦ1(x,x∗) + δxTnaΦ2(x,x∗)

+ δxTa g(x)α(x,x∗)− δxTa g(x∗)u∗.

Since the system is stabilizable (Assumption 1), stability
of non-actuated dynamics at the desired equilibrium x∗na
is guaranteed without control action. Hence, the non-
actuated error terms δxna vanish. Thus,

V̇ (x,x∗, ξ) = −δxTaR11(x∗)δxa + δxTa [∆J11 −∆R11]xa

+ δxTa [J12(x)− J12(x∗)]xna

+ δxTaΦ1(x,x∗) + δxTa g(x)α(x,x∗)− δxTa g(x∗)u∗.

(13)
Note that assuming stabilizability of the system the un-
structured part of the non-actuated dynamics vanish as
well. In this equation, the first term is always negative,
hence, to guarantee that V̇ (x − x∗) ≤ 0, we should find
α(x,x∗) such that



δxTa [(∆J11 −∆R11)xa + (J12(x)− J12(x∗))xna]

+ δxTaΦ1(x,x∗) + δxTa g(x)α(x,x∗)− δxTa g(x∗)u∗ = 0.
(14)

Using Assumption 3, we replace Φ1 by KpR11∇H(xa) or
KpR11δxa where Kp is a positive diagonal gain matrix
with all entries equal or larger than q. By having this
term we can adjust the controller such that the effect of
unstructured component is taken in effect and hence, we
can ensure the strict negativity of Lyapunov derivative
when trajectories are far from the desired equilibrium
point (x∗, ξ∗). Therefore, equation (14) becomes:

δxTa [(∆J11 −∆R11)xa + (J12(x)− J12(x∗))xna]

+ δxTaKpR11δxa + δxTa g(x)α(x,x∗)− δxTa g(x∗)u∗ = 0.

Finally, for

A+ g(x)α(x,x∗) +KpR11δxa − g(x∗)u∗ = 0,

with A = [∆J11 − ∆R11]xa + [J12(x) − J12(x∗)]xna and
selecting

α(x,x∗) = [g(x∗)T g(x)]−1[−g(x∗)T (A+KpR11xa)

+ g(x∗)T g(x∗)u∗],

ensures that V̇ (x − x∗) ≤ 0. By design of the Hamil-
tonian function under Assumption 2, the origin of the
dynamic system is the largest invariant set, and by invok-
ing Lasalle’s invariance principle, we conclude that desired
equilibrium is asymptotically stable in closed-loop Khalil
(2002). �

3.2 Stabilizing at the origin

This section presents the specific case where the system
is to be stabilized at the origin i.e., x∗ = 0. Followed
by the general idea of closed-loop Lyapunov stability, we
end up in a simpler dynamic controller that guarantees
the stability of the system at the origin. Next Proposition
states the main result of this section.

Proposition 5. Consider the port-Hamiltonian system with
unstructured component defined in (6). Assume that the
system is locally stabilizable and that the unstructured
component Ψ(x) meets the conditions of Assumption 3 for
a representation with Hamiltonian meeting Assumption 2.
Then, the state feedback controller given by

u(x, ξ) = [gT (x)g(x)]−1gT (x)

× [−KpR11(x)∇H1(xa) +KI(x)ξ]

ξ̇ = −KT
I (x)∇H1(xa),

(15)

where Kp is positive square constant gain matrix, KI(x) is
a positive state dependent integral gain matrix and ξ ∈ Rm
locally stabilizes the system at the origin .

Proof. We consider the Lyapunov function candidate

V (x, ξ) = 1
2 (xTx + ξT ξ). (16)

To ensure the closed-loop stability, we should find a
controller such that the Lyapunov function derivative is
negative definite except at the origin.

The closed loop augmented system is given as[
ẋa
ẋna
ξ̇

]
=

[
J̃11(x) J12(x) KI(x)

−JT21(x) J̃22(x) 0
KT
I (x) 0 0

][
xa
xna
ξ

]
+

[
Ψ1(x)
Ψ2(x)

0

]
, (17)

where
J̃11(x) =J11(x)− (Kp + I)R11(x)

J̃22(x) =J22(x)−R22(x).

Taking the time derivative of the Lyapunov function, we
have

V̇ =xT ẋ + ξT ξ̇

=
[
xTa xTna

] [ ẋa
ẋna

]
+ ξT ξ̇

=− (Kp + I)xTaR11(x)xa + xTa J12(x)xna + xTaKI(x)ξ

+ xTaΨ1(x)− xTnaJT21(x)xa − xTnaR22(x)xna

+ xTnaΨ2(x)− ξTKT
I (x)xa

=− (Kp + I)xTaR11(x)xa − xnaR22(x)xna + xTaΨ1(x)

+ xTnaΨ2(x).
(18)

Using Assumption 3, we re-express the contribution of the
unstructured terms. We also note that matrices R11(x)
and R22(x) are positive for all x from the representa-
tion of the system. We denote their respective maximal
eigenvalues by r11(x), and r22(x). We obtain the following
inequality

V̇ ≤− (Kp + 1)r11‖xa‖2 − r22(x)‖xna‖2

+ q(x)r11(x)‖xa‖2 + q(x)r22(x)‖xna‖2.
(19)

Under Assumption 3, there exists a positive bound, locally,
q for q(x) and, since the system is stabilizable, it is possible
to find controller gains to ensure that

V̇ ≤− (Kp + 1− q · r11)‖xa‖2 − r22(1− q)‖xna‖2 < 0
(20)

for all x ∈ D \ {0}. The origin of the closed-loop system is
thus asymptotically stable in closed-loop. This concludes
the proof. �

Remark 6. By tuning the controller gains, we can obtain
an acceptable performance against model uncertainy and
disturbance rejection. For nominal port-Hamiltonian sys-
tem, separate analysis has been carried to show robustness
(Ryalat and Laila, 2018) and disturbance rejection (Don-
aire and Junco, 2009; Ferguson et al., 2017) by designing
dynamic controllers.

4. ILLUSTRATIVE EXAMPLE: VAN DE VUSSE
REACTION SYSTEM

To illustrate the proposed construction, we consider the
non-isothermal van de Vusse reaction system, considered
for example in (Ramı́rez et al., 2009). The governing
equations for the system are given by

ĊA = −k1(T )CA − k3(T )C2
A +D(CA0 − CA)

ĊB = k1(T )CA − k2(T )CB −DCB
Ṫ = −k1(T )CA∆H1+k2(T )CB∆H2+k3(T )C2

A∆H3

ρCp

+D(Tin − T ) + Q
ρCp

.

(21)

The control objective is to maximize the concentration
of component B by manipulating the dilution rate and
heat input to the reactor. In the present study, we fix
the dilution rate and use the heat input Q as the sole
manipulated variable to design a dynamic controller for
stabilizing at the desired equilibrium point. In control



affine form, setting CA = x1, CB = x2, and T = x3, the
system is given by

ẋ =

 −k1x1 − k3x2
1 +D(CA0 − x1)

k1x1 − k2x2 −Dx2

− k1x1∆H1+k2x2∆H2+k3x
2
1∆H3

ρCp
+D(Tin − x3)

+

[
0
0
1
ρCp

]
Q,

(22)
where ki(x3) = k0i exp( Ei

Rx3
).

The numerical values of the process parameters are given
in Table 1. To proceed with the design, we first test if the

Table 1. van de Vusse reaction numerical values

CA0 5 (mol/l)
Tin 403.15 K
D 15 (1/h)
Cp 3.01 kJ/(kg K)
ρ 0.9434 (kg/l)
∆H1 4.20 (kJ/mol)
∆H2 -11.00 (kJ/mol)
∆H3 -41.85 (kJ/mol)
k10 1.287× 1012 l/(mol.h)
k20 1.287× 1012 l/(mol.h)
k30 9.043× 109 l/(mol.h)
E1/R -9758.3 K
E2/R -9758.3 K
E3/R -8560.0 K

system is stabilizable and if the unstructured component
is bounded (Assumptions 1 and 3). We can check the
stabilizability for the system by obtaining the following
matrix

S = [f(x), adfg(x), ad2
fg(x)]. (23)

The rank of this matrix is 3 for all x, hence, the system is
stabilizable.

4.1 Application of the main results

A possible representation of the van de Vusse system is
given using the Hamiltonian function

H(x) =
1

2
(x2

1 + x2
2 + x2

3),

the structured matrices

J(x) =

 0 −k1
k1∆H1

ρcp

k1 0 k2∆H2

ρcp

−k1∆H1

ρcp
−k2∆H2

ρcp
0


R(x) =

[
k1 +D 0 0

0 k2 +D 0
0 0 D

]
leaving the unstructured part of the dynamics be expressed
by

Ψ(x) =

−k3x
2
1 + k1x2 − k1x3∆H1

ρcp
+DCA0

−k2x3∆H1

ρcp

−k3x
2
1∆H3

ρcp
+DT0

 .
To test Assumption 3, we need to show that there is
a positive q meeting the following inequality on a local
domain excluding the equilibrium point:

‖Ψ(x)‖ < q‖R(x)∇H(x)‖. (24)

Due to space limitation, detailed calculations are omitted.
However, one can show that the above inequality holds
with q = 1, to be used in the design, for all x ∈ D\{x∗}.

In this example, only the temperature dynamic is ac-
tuated. Considering the proposed quadratic Hamiltonian
function for the system and controller and the reference
trajectory to be a static (admissible) equilibrium points
x∗, the augmented error dynamic is described byẋ1 − ẋ∗1
ẋ2 − ẋ∗2
ẋ3 − ẋ∗3

ξ̇

 =


−k∗1 −D −k∗1

k∗1∆H1

ρcp
0

k∗1 −k∗2 −D
k∗2∆H2

ρcp
0

− k
∗
1∆H1

ρcp
− k

∗
2∆H2

ρcp
−D kI

ρcp

0 0 − kI
ρcp

0


x1 − x∗1
x2 − x∗2
x3 − x∗3

ξ



+

k1 − k∗1 k∗1 − k1 a 0
k1 − k∗1 k2 − k∗2 b 0
−a −b 0 0
0 0 0 0

x1

x2

x3

ξ


+

Ψ1(x)−Ψ1(x∗)
Ψ2(x)−Ψ2(x∗)
Ψ3(x)−Ψ3(x∗)

0

+

 0
0
1
ρCp

0

α(x, x∗)−

 0
0
1
ρCp

0

u∗,
where a = ∆H1

ρcp
(k1 − k∗1), b = ∆H2

ρcp
(k2 − k∗2) and k∗i is the

reaction coefficient evaluated at x∗3.

We need to find a proper gain for the proportional part
of controller. As mentioned in the proof of Proposition
4, this can be done through calculation of q < q(x).
Then, we select a gain in the order of calculated q. From
equation (11) and Proposition 4, a dynamic controller for
this system is defined by

u(x, x∗, ξ) = (k1 − k∗1)∆H1x1 + (k2 − k∗2)∆H2x2

− ρCpD(x3 − x∗3) + u∗ + kIξ

ξ̇ = − kI
ρCp (x3 − x∗3).

(25)

4.2 Simulation results and discussion

For numerical simulations, we set KI = 40 as integral gain.
This value is selected such that the fraction in controller
(25) holds a reasonable value. Initially, the reactor is oper-
ating at a steady-state of x∗ = (1.18, 0.87, 403.96), which
corresponds to u∗ = −500KJ/hr. We seek to reach the op-
timum steady-state, where CB is maximized, that is x∗ =
(2.02, 1.07, 389) which corresponds to u∗ = −1100KJ/hr
(Nguyen et al., 2018). To show a more illustrative response
of the controller, following the presentation in (Ramı́rez
et al., 2009), we present a sequence of step changes before
reaching to the desired equilibrium. Fig. 1 shows that the
system trajectories converge to the desired steady state.
The dynamics of control input is given in Fig. 2.

5. CONCLUSION

We considered the problem of state feedback stabilizing
controller design for a class of nonlinear systems described
by a structured part, a port-Hamiltonian system, com-
posed with an unstructured component. A state-feedback
control design, based on the structured part, is presented.
Under mild conditions on the unstructured dynamics re-
lated to the natural dissipation of the port-Hamiltonian
system, it is shown that the overall closed-loop system ren-
ders a desired equilibrium point of the dynamics asymptot-
ically stable. Using the proposed approach, a simpler con-
troller can be designed by exploiting the port-Hamiltonian
structure without solving matching equations. The results



Fig. 1. Closed-loop trajectory response for van de Vusse
system

Fig. 2. Dynamic controller output value for van de Vusse
system

are validated by simulations of the non-isothermal van de
Vusse system. Current investigations focus on the prob-
lem of output feedback design for the proposed class of
systems.
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