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Abstract: Enclosing the reachable sets of nonlinear control systems is useful in state estimation
and safety verification for chemical process models. We present a new approach for computing
time-varying interval bounds for ordinary differential equation models based on differential
inequalities. Instead of using interval arithmetic like established approaches, we instead
generate bounding information for the right-hand side (RHS) function by optimizing its convex
relaxations. Complementarity formulations are explored, and are found to be particularly
beneficial if the RHS function is quadratic and we employ the αBB relaxations.
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1. INTRODUCTION

The problem of interest in this paper is to compute tight
bounds for the reachable set of nonlinear dynamic systems
represented as system of parametric ordinary differential
equations (ODEs) with uncertain inputs, parameters, and
initial conditions. Such enclosures are important in many
applications, including state estimation (Jaulin, 2002), pa-
rameter estimation (Singer and Barton, 2006), safety veri-
fication (Huang et al., 2002; Tomlin et al., 2003), fault de-
tection (Lin and Stadtherr, 2008), and global dynamic op-
timization (Papamichail and Adjiman, 2002; Singer et al.,
2006). Various strategies have been proposed to enclose
this reachable set, such as solving the Hamilton-Jacobi
equations (Mitchell et al., 2005), conservatively linearizing
nonlinear models (Althoff et al., 2008), constructing zono-
topes (Kühn, 1998; Yang and Scott, 2018) or ellipsoids
(Kurzhanski and Varaiya, 2002), and computing validated
solutions (Nedialkov et al., 1999; Lin and Stadtherr, 2007).
This paper focuses on another category of methods that
are based on differential inequalities (Walter, 1970).

Differential inequality-based methods generate time-varying
interval enclosures for the original nonlinear dynamic sys-
tem by constructing an auxiliary dynamic system and
solving this numerically. The solutions of the auxiliary
system are component-wise lower and upper bounds for
the original system. Differential inequality-based methods
require valid bounding information for the original sys-
tem’s right-hand side (RHS) function. Harrison (1977)
first proposed to use natural interval extensions (NIE)
(Moore et al., 2009) to calculate interval bounds of the
RHS function automatically. This strategy was extended
using affine relaxation techniques for tighter enclosures
(Singer and Barton, 2006). Harwood et al. (2016) intro-
duced a method to bound the RHS function with the
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solutions of linear programs (LPs). These LPs optimize
piecewise-affine relaxations of the original RHS function
that are derived with a special relaxation scheme to ensure
the Lipschitz continuity. Chachuat and Villanueva (2012)
presented another differential inequality-based approach
that applies Taylor series expansion to the original system.
Besides the various techniques for constructing an auxil-
iary bounding system, another direction of research in this
area involves generating less conservative enclosures by
exposing the “hidden constraints” of the original system,
such as physical bounds and implicit conservation laws
(Scott and Barton, 2013; Shen and Scott, 2017). This
approach may require specialized knowledge of the system
of interest to formulate effective constraints for refining
the enclosures.

In this work, we propose a novel differential inequality-
based method for computing enclosures for nonlinear con-
trol systems. Bounding information for the RHS function
is obtained by optimizing its convex relaxations. This is
distinct from the LP-based method by Harwood et al.
(2016) in which the relaxations are limited to a special
type of convex piecewise-affine under-estimators. Our new
approach, on the other hand, is applicable to a broad
range of convex relaxations. Moreover, complementarity
formulations are developed in an effort to solve the opti-
mization problems efficiently. Examples are presented for
illustration.

The following notation conventions are used in this paper.
Vectors are denoted with boldface lower-case letters (e.g.
x). Given vectors x,y ∈ Rn, inequalities such as x < y or
x ≤ y are to be interpreted component-wise. Convexity of
a vector-valued function f refers here to convexity of all
components fi. A matrix is denoted with boldface upper-
case letters (e.g. A), and its elements are represented by
corresponding lower case letters with subscripts indicating
the row and column (e.g. aij). An interval in Rn is a



nonempty subset of Rn of the form {x ∈ Rn : a ≤ x ≤ b},
which is denoted as [a, b]. IRn denotes the set of all
intervals in Rn.

2. PROBLEM STATEMENT

Consider t0, tf ∈ R with t0 < tf , and define I := [t0, tf ].
Let U := [uL,uU ] ⊂ Rnu be an interval, and D ⊂ Rnx be
open. Denote the space of all Lebesgue integrable functions
h : I → Rn as Ln(I). Let Ũ := {u ∈ Lnu(I) : u(t) ∈ U, t ∈
I} be a set of admissible controls, and X0 := [xL0 ,x

U
0 ] ∈ D

be a set of admissible initial conditions. Given a continuous
mapping f : I × U × D → Rnx for which f(t, ·, ·) is
twice-continuously differentiable for each t ∈ I, consider
an initial-value problem

ẋ(t,u,x0) = f(t,u(t),x(t,u,x0)), ∀t ∈ (t0, tf ], (1)

x(t0,u,x0) = x0,

where (u,x0) ∈ Ũ × X0, and where dotted quantities
indicate time-derivatives (e.g. ẋ ≡ ∂x

∂t ).

Under these conditions, the ordinary differentiable equa-
tion (ODE) (1) is guaranteed to have a unique solution by
the Picard-Lindelöf Theorem, summarized as (Hartman,
2002, Theorem 1.1, Chapter II).

The objective of this work is to compute tight time-
varying interval bounds for x(t,u,x0) in (1). Here, we use
the terminology proposed by Scott and Barton (2013) to
describe such enclosures.
Definition 1 (State bounds). Functions xL,xU : I →
Rnx are state bounds for the ODE (1) if

xL(t) ≤ x(t,u,x0) ≤ xU (t), ∀(t,u,x0) ∈ I × Ũ ×X0.

Let XB : I → IRnx denote the corresponding interval
function: XB(t) := [xL(t),xU (t)] for each t ∈ I.

3. BACKGROUND

The following fundamental differential inequality theorem
was presented in (Harrison, 1977).
Proposition 1. Let xL,xU : I → Rnx satisfy the
following conditions.

(1) x0 ∈ XB(t0),
(2) For a.e. t ∈ I and each i ∈ {1, . . . , nx},

ẋLi (t) ≤ min
z∈XB(t), zi=x

L
i (t),

u∈Ũ

fi(t,u, z), (2a)

ẋUi (t) ≥ max
z∈XB(t), zi=x

U
i (t),

u∈Ũ

fi(t,u, z), (2b)

Then x(t,u,x0) ∈ XB(t) for all (t,u) ∈ I × Ũ .
Based on the above result, Harrison (1977) suggested to
compute ẋL and ẋU by applying NIE to f . This method
generates an inclusion function of f that is independent
of u and z, satisfying the following definition.
Definition 2 (Inclusion function). Let S ∈ IRn and h :
S → Rm. An interval function H = [hL,hU ] : IRn → IRm
is a inclusion function of h on S if

{h(z) : z ∈ Z} ⊆ H(Z), ∀Z ⊆ S.

Harrison also noted that choosing ẋL and ẋU close to the
bounds given by (2) will empirically benefit the generated

state bounds. A recent comparison result for ODE solu-
tions (Song and Khan, 2020a) also confirms this. So, we
explore the possibility of providing bounding information
of fi with convex relaxation, which is typically closer to
the original function compared with NIE.
Definition 3 (Convex relaxation). Let Z ∈ IRn and
h : Z → Rm. Then:

(1) hcv : Z → Rm is a convex relaxation of h on Z if
hcv(z) ≤ h(z) for all z ∈ Z and hcv is convex on Z.

(2) hcc : Z → Rm is a concave relaxation of h on Z if
hcc(z) ≥ h(z) for all z ∈ Z and hcc is concave on Z.

(3) The interval function H = [hcv,hcc] is called a
convex inclusion function of h on Z.

4. NEW FORMULATION

Define an interval function FR = [f cv,f cc] : I × U ×
Rnx → IRnx , and recall the considered ODE system (1).
Assumption 1. Suppose that the interval function FR =
[f cv,f cc] has the following properties:

(1) f cv and f cc are continuous,
(2) f cv and f cc are locally Lipschitz continuous in x,

uniformly in (t,p),
(3) FR(t, ·, ·) is an convex inclusion function of f(t, ·, ·)

on U ×D for a.e. t ∈ I.
Definition 4. Under Assumption 1, define an interval
function FB = [fL,fU ] : I × IRnx → IRnx such that, for
each i ∈ {1, . . . , nx}, t ∈ I, and Ξ = [ξL, ξU ] ∈ IRnx ,

fLi (t,Ξ) = min
z∈Ξ, zi=ξ

L
i ,

p∈U

f cvi (t,p, z), (3a)

and fUi (t,Ξ) = max
z∈Ξ, zi=ξ

U
i ,

p∈U

f cci (t,p, z). (3b)

Define the following auxiliary ODE system over t ∈ I:

ẋL(t) = fL(t,XB(t)), xL(t0) = xL0 , (4a)

ẋU (t) = fU (t,XB(t)), xU (t0) = xU0 . (4b)

4.1 Existence and uniqueness

This section shows that the auxiliary ODE system (4) has
exactly one solution under mild assumptions.
Theorem 1. Under Assumption 1, the ODE (4) has
unique solutions.
Proof. Define gcv, gcc : I × Rnx → Rnx such that

gcvi (t, z) = min
p∈U

f cvi (t,p, z),

gcci (t, z) = max
p∈U

f cci (t,p, z),

for each i ∈ {1, . . . , nx}. Then, (3) becomes

fLi (t,Ξ) = min
z∈Ξ, zi=ξLi

gcvi (t, z),

fUi (t,Ξ) = max
z∈Ξ, zi=ξUi

gcci (t, z). (5)

According to Assumption 1 and Clarke (1990, Theo-
rem 2.1), (gcv, gcc) are Lipschitz continuous in z, uni-
formly in t. Moreover, because gcv(t, ·) and gcc(t, ·) are
readily verified to be convex and concave, respectively,
Proposition 2 from Song and Khan (2020b) ensures that
(fL,fU ) in (5) are Lipschitz continuous with respect to
ξL and ξU , uniformly for t ∈ I. Then, the existence and
uniqueness of (4) is guaranteed by the Picard-Lindelöf
Theorem (Hartman, 2002, Theorem 1.1, Chapter II).



4.2 Bounding the original system

This section shows that the auxiliary ODE (4) provides
valid state bounds for (1).
Theorem 2. Under Assumption 1, let (xL,xU ) be solu-
tions of the ODE (4). Then, (xL,xU ) are state bounds of
ODE (1).
Proof. It suffices to show that the two requirements in
Proposition 1 are satisfied by (xL,xU ). First, x0 ∈ XB(t0)
is ensured by the construction of auxiliary ODE system
(4). Second, Condition 3 in Assumption 1 guarantees that,
for a.e. t ∈ I and any (p, z) ∈ U ×D,

f cv(t,p, z) ≤ f(t,p, z).

So for a.e. t ∈ I, each Ξ ∈ IRnx , and each i ∈ {1, . . . , nx},
ẋLi (t) = fLi (t,Ξ) = min

z∈Ξ, zi=ξ
L
i ,

p∈U

f cvi (t,p, z)

≤ min
z∈Ξ, zi=ξ

L
i ,

u∈Ũ

fi(t,u, z).

Similarly,

ẋUi (t) = fUi (t,Ξ) ≥ max
z∈Ξ, zi=ξ

U
i ,

u∈Ũ

fi(t,u, z).

The second condition in Proposition 1 is thus satisfied.

5. COMPLEMENTARITY REFORMULATION

This section derives a complementarity reformulation of
(3) based on Karush-Kuhn-Tucker (KKT) conditions. To
simplify notation, denote y = (x,p) ∈ Rnx+nu in the
remainder of this paper. We also define the following
operators as did Scott and Barton (2013).
Definition 5. For each i ∈ {1, . . . , nx}, define flattening
operators Bi, Bi : IRnx → IRnx such that,

(1) Bi([φ,ψ]) = [φ,ψ′], where ψ′i = φi, and ψ′k = ψk for
all k ∈ {1, . . . , nx}\{i},

(2) Bi([φ,ψ]) = [φ′,ψ], where φ′i = ψi, and φ′k = φk for
all k ∈ {1, . . . , nx}\{i}.

The optimization problem in (3a) can be then refor-
mulated as follows; with Ξ = [ξL, ξU ], [φL(i),φ

U
(i)] =

Bi([(ξ
L,uL), (ξU ,uU )]),

min
y

f cvi (t,y), (6)

s.t. φL(i) ≤ y ≤ φ
U
(i).

The corresponding KKT conditions are:

∇y∗f cvi (t,y∗) + µ− µ = 0,

φL(i) ≤ y
∗ ≤ φU(i),

µ ≥ 0, µ ≥ 0, (7)

(µ− µ)>y∗ + µ>φL(i) − µ
>φU(i) = 0.

Under Assumption 1, (6) is a box-constrained convex op-
timization problem which satisfies the linearity constraint
qualification. So, satisfying the condition (7) is equiva-
lent to y∗ solving (6) directly. A similar formulation can
be derived for the optimization problem in (3b): with
[ψL(i),ψ

U
(i)] = Bi([(ξ

L,uL), (ξU ,uU )]),

∇y∗f cci (t,y∗)− ν + ν = 0,

ψL(i) ≤ y
∗ ≤ ψU(i),

ν ≥ 0, ν ≥ 0, (8)

(ν − ν)>y∗ + ν>ψL(i) − ν
>ψU(i) = 0.

So (3) can be reformulated as

fLi (t,Ξ) = f cvi (t,y∗),

and fUi (t,Ξ) = f cci (t,y∗), (9)

where y∗ and y∗ are the KKT points in (7) and (8),
respectively.

The dynamic system (4) with its RHS defined in (9) can
thus be considered as a mixed nonlinear complementar-
ity system (NCS), for which many numerical algorithms
have been developed (Schumacher, 2004). In particular, a
software platform Siconos (Acary and Pérignon, 2007) has
been developed to solve NCSs efficiently.

6. CONSTRUCTING CONVEX INCLUSION
FUNCTIONS OF f

According to Theorem 2, state bounds for (1) can be
computed by constructing a convex inclusion function of
f , FR = [f cv,f cc], that satisfies Assumption 1. One way
to construct FR is to use convex (concave) envelopes,
which are defined as the supremum (infimum) of all convex
under-estimators (concave over-estimators) of f . In this
case, we obtain the tightest bounds that are consistent
with Proposition 1. However, the convex envelope is gen-
erally cumbersome or impossible to evaluate for multivari-
ate functions. A practical and computationally simpler
method for generating such a convex inclusion function
is to derive αBB relaxations (Androulakis et al., 1995)
for f . Other relaxation approaches, such as McCormick
relaxation (Scott et al., 2011; Khan et al., 2017, 2018), are
also applicable.

6.1 αBB relaxation

αBB relaxation is an established technique (Adjiman
et al., 1998) for constructing convex under-estimators
for general nonconvex twice differentiable functions. To
construct a relaxation, a negative convex quadratic term
is added to the original function, h : Rn → Rm:

hcv(z) := h(z) +

n∑
i=1

αi(z
L
i − zi)(zUi − zi),

where zL and zU are the lower and upper bounds of z,
and α ∈ Rn is a constant vector that is determined by h,
zL, and zU . Adjiman et al. (1998) propose an approach
to construct a valid α that ensures the convexity of the
under-estimator hcv. The first step of this approach is to
determine a symmetric interval matrix [H] such that

∇2h(z) ∈ [H], ∀z ∈ [zL, zU ].

This can be accomplished by applying NIE to the Hessian
matrix of h, denoted as H. Then, each component αi,
i ∈ {1, . . . , n}, can be calculated as

αi = max

0,−1

2

hii −∑
j 6=i

|h|ij

 , (10)



where |h|ij = max{|hij |, |hij |}, and hij , hij are the lower
and upper bounds of hij in H, respectively. Correspond-
ingly, a concave over-estimator can be constructed by
taking the negative of the αBB convex under-estimator
of −h(z).

Using αBB relaxation, a convex inclusion function FR that
satisfies Assumption 1 can be constructed as follows.
Definition 6. Define an αBB relaxation Fα = [f cv,f cc] :
I × IRny → IRny such that, for each i ∈ {1, . . . , nx},

f cvi (t,y) = fi(t,y) +

ny∑
j=1

acvij (t)(yLj − yj)(yUj − yj), (11a)

f cci (t,y) = fi(t,y)−
ny∑
j=1

accij (t)(yLj − yj)(yUj − yj), (11b)

where the ith rows of matrices Acv(t) and Acc(t) are α
factors for fi(t, ·) and −fi(t, ·), respectively, obtained as
in (Adjiman et al., 1998).

The αBB parameters in Acv(t) and Acc(t) can be calcu-
lated via (10) at each t ∈ I with yL = (ξL(t),uL) and
yU = (ξU (t),uU ). Alternatively, if constant bounds of x
are available on I×U , then these can be used to determine
another valid combination of yL and yU . Such bounds
may be a rough enclosure of the reachable set, or may be
computed by an established state bounding method, such
as by Harrison (1977).

Since the original RHS function f is twice differentiable, it
is readily verified that Fα in Definition 6 is a valid choice
of FR that satisfies Assumption 1, and may be employed
in the state bounding system (4).

6.2 Specialization to quadratic functions

If the original RHS function f in (1) is quadratic, then its
αBB relaxations f cv and f cc are also quadratic. For an
arbitrary i ∈ {1, . . . , nx}, suppose that

fi(t,y) = y>Qy + q>y + c,

where Q is symmetric.
Definition 7. For matrices (or vectors) A,B ∈ Rm×n,
their Hadamard product A�B ∈ Rm×n is a matrix with
elements

(A�B)ij = aijbij .

Let acv(i) be the transposed ith row of Acv. Then, (11a)

provides

f cvi (t,y) = y>Qy + q>y + c+

ny∑
j=1

acvij (yLj − yj)(yUj − yj)

= y>Q̃y + q̃>y + c̃,

where, with diag(acv(i)) denoting the diagonal matrix with

components of acv(i) along its main diagonal,

Q̃ := Q+ diag(acv(i)),

q̃ := q − acv(i) � (yL + yU ),

c̃ := c+

ny∑
j=1

acvij y
L
j y

U
j .

Then, the optimization problem in (3a) can be expressed
as a convex quadratic program (QP); with Ξ = [ξL, ξU ],
[φL(i),φ

U
(i)] = Bi([(ξ

L,uL), (ξU ,uU )]),

min
y

y>Q̃y + q̃>y + c̃, (12)

s.t. φL(i) ≤ y ≤ φ
U
(i).

The KKT conditions of (12) can be derived accordingly:

2 Q̃y∗ + q̃ + µ− µ = 0,

φL(i) ≤ y
∗ ≤ φU(i),

µ ≥ 0, µ ≥ 0, (13)

(µ− µ)>y∗ + µ>φL(i) − µ
>φU(i) = 0.

A vector y∗ solves (12) if and only if there are multipliers
(µ,µ) for which (y∗,µ,µ) solves (13).

Note that the QPs described in (12) and (13) are solv-
able by efficient commercial solvers such as CPLEX and
Gurobi. They may also be treated as multi-parametric
quadratic programs (Pistikopoulos, 2009), in which the
optimum of the optimization problem is considered as
a function of varying parameters. The advantage of this
strategy is that an analytical expression of the optimum
function can in principle be obtained in advance, for quick
online evaluation.

Moreover, the KKT conditions in (13) also comprise a
mixed linear complementarity problem (MLCP). Com-
prehensive theoretical results and various numerical algo-
rithms for LCPs and MLCPs can be found in literature;
see e.g. Cottle et al. (1992).

7. NUMERICAL EXAMPLES

This section presents numerical examples in which state
bounds are constructed for nonlinear dynamic system with
our new method described in Sections 4 and 6. This
method was implemented in Julia v1.4.2 with the auxiliary
system of ODEs solved with DifferentialEquations.jl. All
numerical experiments were performed on a Windows 10
machine with an AMD Ryzen 2600X CPU and 16GB
memory.

The first example involves a simple ODE system with a
quadratic RHS.
Example 1. Consider the quadratic ODEs:

ẋ1(t,u) = (x1 − u1)2 − (x2 − u1)2, x1(t0) = 2.2,

ẋ2(t,u) = (x1 − u2)2 − (x2 − u2)2, x2(t0) = 1.8,

where U ≡ [−2, 2] × [−1, 3], u = (u1, u2) ∈ Ũ , and
I ≡ [t0, tf ] = [0.0, 0.2].

Using the approach from Section 6.2, we derived quadratic
αBB relaxations of f , and the QPs (12) in (4) were solved
with CPLEX v12.10. The resulting bounds are illustrated
in Figure 1, along with Harrison’s NIE-based method and
trajectories of the original system. This figure shows that
the time-varying bounds generated by our new method are
tighter than those by Harrison’s method.

Next, we consider the Van der Pol oscillator, which is a
classic dynamic system that has been widely studied in
electrical engineering and biological science. Relaxations of
this system were obtained by Shen and Scott (2017). Here,



Fig. 1. State bounds of x1 in Example 1 computed by
relaxing RHS functions with NIE (dotted) and αBB
relaxation in (4) (dashed). Solid (overlapping) lines
are real trajectories.

we consider its two-dimensional form with uncertainty in
both initial conditions and RHS functions.
Example 2. Consider the Van der Pol oscillator:

ẋ1(t,u) = x1, x1(t0,u) = u1(t0),

ẋ2(t,u) = u1(1− x2
1)x2 − x1, x2(t0,u) = u2(t0),

where U ≡ [1.399, 1.400]× [2.299, 2.300], u = (u1, u2) ∈ Ũ ,
and I ≡ [t0, tf ] = [0, 6].

The αBB relaxations of this ODE’s RHS functions were
obtained via (11) and optimized by IPOPT (Wächter and
Biegler, 2006). State bounds were computed for the state
variable x1 using Harrison’s method (NIE) and our new
αBB-based method, and are plotted in Figure 2. In this
case, the new method generates a better enclosure while
Harrison’s method explodes faster.

Fig. 2. State bounds of x1 in Example 2 computed by
relaxing RHS functions with NIE (dotted) and αBB
relaxation in (4) (dashed). Solid (overlapping) lines
are real trajectories.

The last example involves a bioreactor process (Bastin and
Dochain, 1990). An enclosure of this system was obtained
by Lin and Stadtherr (2006).
Example 3. Consider a microbial growth process de-
scribed by the following ODE system:

Ẋ = (µ− αD)X, X(t0) = 0.82,

Ṡ = D(Si − S)− kµX, S(t0) = 0.8,

where state variables X and S respectively represent the
concentrations of biomass and substrate, I ≡ [t0, tf ] =
[0, 3], and µ is the growth rate

µ =
µmS

KS + S +KIS2
.

The remaining quantities are parameters, whose values
and uncertainties are provided in Table 1.

Table 1. Microbial growth process parameters

Parameter Symbol Value Unit

Process heterogeneity α 0.5 -
Dilution rate D 0.36 day−1

Influent concentration Si 5.7 g S/l
Yield coefficient k 10.53 g S/g X
Max growth rate µm 1.2 day−1

Kinetic parameter KS [7.0, 7.2] g S/l

Kinetic parameter KI [0.4, 0.6] (g S/l)−1

In this numerical experiment, we consider the two kinetic
parameters KS and KI , to have bounded uncertainties.
Corresponding state bounds were constructed with αBB
relaxations in (4), and are shown in Figure 3. This figure
shows that the proposed new approach produces a tighter
enclosure for the biomass concentration than Harrison’s
method.

Fig. 3. State bounds of X in Example 3 computed by
relaxing RHS functions with NIE (dotted) and αBB
relaxation in (4) (dashed). Solid lines are real trajec-
tories.

8. CONCLUSION

We have developed an approach for computing tight en-
closures for nonlinear control systems based on differential
inequalities. Bounding information for the original RHS
function f is obtained by optimizing its convex relax-
ations. We investigated the usage of αBB relaxation in
this context, and developed the corresponding comple-
mentarity reformulation as an NCS. Our numerical results
illustrate the tightness of the time-varying interval bounds
generated by our new method. Future work may involve
exploring the usage of other established convex relaxation
techniques (Scott et al., 2011; Khan et al., 2017, 2018).
Our proof-of-concept implementation involves repeatedly
solving optimization problems during integration, which
requires a considerable amount of computing effort, espe-
cially when the system of interest is nonlinear. As sug-
gested in Section 5, a specialized complementarity system
solver would help in a more sophisticated implementation.
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