
An Adaptive Correction Scheme for
Offset-Free Asymptotic Performance in
Deep Learning-based Economic MPC ?

Dinesh Krishnamoorthy ∗ Ali Mesbah ∗∗ Joel A. Paulson ∗∗∗

∗Department of Chemical Engineering, Norwegian University of
Science & Technology (NTNU), NO-7491 Trondheim, Norway (e-mail:

dinesh.krishnamoorthy@ntnu.no).
∗∗Department of Chemical and Biomolecular Engineering, University

of California, Berkeley, CA 94720 USA (e-mail: mesbah@berkeley.edu)
∗∗∗Department of Chemical and Biomolecular Engineering, Ohio State
University, Columbus, OH 43210 USA (e-mail: paulson.82@osu.edu).

Abstract: There has been an increasing interest in explicit and cheap-to-evaluate control
policies that approximate (computationally expensive) control laws such as model predictive
control (MPC). However, approximate control policies are subject to approximation errors,
leading to asymptotic performance losses. The contribution of this paper is three-fold: (i) a
closed-loop training scheme is presented for deep neural network approximation of economic
MPC; (ii) an online adaptive correction scheme is presented to account for the performance
losses induced by approximation errors; and (iii) an offline performance verification scheme is
presented to ensure that the approximate control policy converges to an equilibrium point of
the system. The proposed approach is illustrated using a Williams-Otto reactor problem.

Keywords: Approximate MPC, deep neural networks, probabilistic guarantees, adaptive
correction, offset-free performance

1. INTRODUCTION

Economic model predictive control (MPC) is a popular
optimization-based control strategy that has found use in
various applications. However, some of the open challenges
with economic MPC include high memory footprint and
high computational burden associated with repeatedly
solving an optimal control problem online. Explicit MPC
was proposed to address these challenges for the tracking
problem, where the online optimal control law is replaced
with a pre-computed control law (Bemporad et al., 2002;
Tøndel et al., 2003). However, this approach can quickly
become computationally intractable for large systems,
and the extension to nonlinear systems with economic
objectives is not trivial.

Recently, there has been an increasing interest to “ap-
proximate” MPC policies using suitable function approx-
imators such as polynomials (Chakrabarty et al., 2017),
radial-basis functions (Csekő et al., 2015), and deep neu-
ral networks (Karg and Lucia, 2020; Chen et al., 2018;
Paulson and Mesbah, 2020a; Hertneck et al., 2018; Drgoňa
et al., 2018; Zhang et al., 2019; Hirose et al., 2018). The
underlying idea of approximate MPC is as follows. The
optimal control problem is solved offline for various state
realizations xi to obtain the MPC policy u∗i = πmpc(xi).
Then, πmpc(·) is approximated using a training dataset

? DK gratefully acknowledges the financial support from the IK-
TPLUSS project from the Research Council of Norway, and Peder
Sather Grant. DK and JP contributed equally to this work.

consisting of Ns samples {(xi, u∗i)}
Ns
i=1 to derive a cheap-

to-evaluate control policy πapprox(·). This can be seen as
a policy approximation using an expert-based supervised
learning (Bertsekas, 2019, Section 5.7), where πapprox(·) is
the approximate policy function.

Although approximate MPC has been shown to give good
closed-loop performance in many examples, there are in-
evitable approximation errors due to (i) the choice of
the hyperparameters that decide the functional form and
architecture of the approximate control policy, and (ii)
possibly insufficient training data in some regions of the
feasible state space leading to poor generalization. In ad-
dition, changes in some of the model parameters, or oper-
ation in parts of the state-space not covered adequately
in the training dataset may affect the accuracy of the
approximate control policy. These approximation errors
can lead to asymptotic losses in closed-loop performance.

In this paper, we propose a closed-loop training procedure
for approximating economic MPC using deep neural net-
works. We then propose a KKT-derived online adaptive
correction scheme to account for the performance losses
due to the policy approximation. To ensure convergence
of the online adaptive correction scheme, which is not
guaranteed by design, we propose an offline performance
verification method. The performance verification provides
probabilistic guarantees that the closed-loop control sys-
tem converges to a stable equilibrium point.

The reminder of the paper is organized as follows. Section
2 presents the economic MPC problem, along with its

asymptotic properties. Section 3 presents the approximate
MPC scheme with closed-loop training. The proposed
KKT-derived online adpative correction scheme for offset-
free asymptotic performance and the probabilistic verifi-
cation are presented in Section 4.

2. PRELIMINARIES: ECONOMIC MPC WITH
STABILITY GUARANTEES

Consider a discrete-time nonlinear system

x(t+ 1) = f(x(t), u(t)), (1)

where x ∈ Rnx denotes the states, u ∈ Rnu denotes the
control input, and the mapping f : Rnx × Rnu → Rnx

represents the system model. We look to obtain a feedback
control law πmpc : Rnx → Rnu that is implicitly defined
by solving an economic MPC problem. The corresponding
optimal control problem (OCP) is formulated as

V (x0) = min
x(·|t),u(·|t)

N−1∑
k=0

`(x(k|t), u(k|t)) (2a)

s.t. x(k + 1|t) = f(x(k|t), u(k|t)), ∀k ∈ I0:N−1 (2b)

x(k|t) ∈ X , u(k|t) ∈ U , ∀k ∈ I0:N−1 (2c)

x(N |t) = xe (2d)

x(0|t) = x0, (2e)

where ` : Rnx×Rnu → R denotes the stage cost, which may
include a combination of tracking and economic terms; N
is the length of the prediction horizon; (2c) are the path
constraints; (2d) is the terminal constraint; and (2e) is
the current state measurement x0 = x(t) that is used to
initialize the model. Note that (2d) is in the form of a
terminal equality constraint, in which xe ∈ X denotes a
feasible equilibrium point (see Definition 2).

The optimal control problem (2) is repeatedly solved at
each sample time t using x(t) as the initial state, and the
first sample of the optimal input u∗(0|t) is implemented
in a receding-horizon fashion. This implicitly leads to the
following definition of the control law

u∗(t) = πmpc(x(t)). (3)

Definition 1. (Admissible set) The admissible set is de-
fined as the set of pairs (x0, u(·|t))
ZN := {(x0, u(·|t)) | ∃x(1|t), . . . , x(N |t) : (2b)–(2d)},

and the set of admissible states XN = ProjX (ZN) can be
defined as the projection of ZN onto X .

Definition 2. (Equilibrium point) A point (xe, ue) is called
an equilibrium point if xe = f(xe, ue) holds. Further,
(xe, ue) is called an optimal equilibrium point if

`(xe, ue) ≤ `(x, u) ∀(x, u) ∈ X × U with x = f(x, u).

Definition 3. (Dissipativity) The system (1) is said to be
dissipative w.r.t. an equilibrium point (xe, ue) ∈ X × U if
there exists a storage function λ : X → R+ such that

λ(f(x, u))− λ(x) ≤ `(x, u)− `(xe, ue), ∀(x, u) ∈ X × U .
(4)

Furthermore, system (1) is said to be strictly dissipative,
if there exists α ∈ K∞ such that

λ(f(x, u))− λ(x) ≤ `(x, u)− `(xe, ue)−α(‖x− xe‖). (5)

Assumption 1. (a) X × U is compact, and the functions
f : X × U → X and ` : X × U → R are continuous.

(b) Weak controllability - There exists a function γ(·) of
class K∞ such that for each x ∈ XN there exists a
feasible u(·|t) with

∑N−1
k=0 |u(k|t)−ue| ≤ γ(‖x−xe‖).

Assumption 2. Linear inequality constraint qualification
and strong second order sufficient conditions holds for the
optimal control problem (2).

Assumption 3. (a) There exists at least one equilibrium
pair (xe, ue) ∈ X × U .

(b) There exists a bounded non-negative storage function
λ and α ∈ K∞ such that the OCP (2) is strictly
dissipative w.r.t. the equilibrium point (xe, ue) in the
sense of Definition 3.

Lemma 1. Given Assumptions 2 and 3, (xe, ue) is a unique
minimizer of the steady-state optimization problem

(xe, ue) = argmin
x,u

`(x, u) (6a)

s.t. x = f(x, u) (6b)

x ∈ X , u ∈ U . (6c)

Proof Suppose another equilibrium point (x′e, u
′
e) ex-

ists that minimizes (6), this would imply `(x′e, u
′
e) <

`(xe, ue). However, evaluating the dissipation inequality
(5) at (x′e, u

′
e) leads to a contradiction. Hence `(x′e, u

′
e) <

`(xe, ue) cannot be true, and `(xe, ue) is the unique global
minimizer of (6). �

Strict dissipativity implies that the system is optimally
operated at steady-state. That is, the inequality

lim sup
T→∞

1

T

T−1∑
k=0

`(xπ(k;x0), πmpc(xπ(k;x0))) ≥ `(xe, ue)

holds for all x ∈ X and all admissible control sequences
πmpc(x), as shown in (Grüne and Pannek, 2017, Propo-
sition 8.9) and (Angeli et al., 2011, Proposition 6.4). A
direct implication of this inequality is that, for a dissipa-
tive system, the closed-loop performance must be infinite
horizon averaged optimal. That is,

`(xπ(k;x0), πmpc(xπ(k;x0)))→ `(xe, ue) as k →∞. (7)

As shown by Diehl et al. (2010), one can use a rotated
stage cost and the Lyapunov stability framework to show
that (xe, ue) is indeed an asymptotically stable point of
the closed-loop system using the economic MPC policy
πmpc(·). Defining the rotated stage cost as

L(x, u) := `(x, u) + λ(x)− λ(f(x, u)), (8)

we can write the OCP as

Ṽ (x0) =

{
min

x(·|t),u(·|t)

N−1∑
k=0

L(x(k|t), u(k|t)) | (2b)− (2e)

}
and, as shown by Angeli et al. (2011), rotation does not
alter the optimal solution. Hence, we can use the Lyapunov
framework using the rotated stage cost.

Theorem 1. (Nominal stability of economic MPC policy).
Let Assumptions 1, 2 and 3 hold. Then, the closed-loop
system x(t + 1) = f(x(t), πmpc(x(t)) is asymptotically
stable at (xe, ue) with a region of attraction XN .

Proof See Appendix A. �

3. DEEP LEARNING-BASED APPROXIMATE MPC

To replace the implicitly-defined MPC control law (3)
with a more resource efficient representation, we look to

determine an explicit function that maps all possible initial
states x0 ∈ X to the optimal control action u?(t;x0). The
set X ⊆ X denotes the working region of the controller
and will be mathematically defined later in the paper. For
linear models and constraints and quadratic cost functions,
the MPC control law can be computed fully offline us-
ing multiparametric quadratic programming algorithms,
which is often referred to as explicit MPC. However,
the extension of explicit MPC to nonlinear and high-
dimensional problems has remained an open challenge due
to a more complex set of optimality conditions and the
potential exponential growth in the number of regions
defining the control law as the problem size increases.
Therefore, we take the perspective in this work that an
approximation to this explicit function will be acceptable
for real-time purposes. Deep neural networks (DNNs) have
recently become a popular choice for the approximation
due to their representational power and the availability of
advanced training algorithms in a number of open-source
platforms. To construct this data-driven approximation of
πmpc, we must first generate a training data set

D = {(x1, πmpc(x1)), . . . , (xNs
, πmpc(xNs

)}, (9)

where Ns denotes the number of samples. In this case, the
OCP (2) needs to be solved for every xi ∈ X. A DNN
function with fully connected layers can be represented as

N (x; θ) = αL+1 ◦ βL ◦ αL ◦ · · · ◦ β1 ◦ α1(x), (10)

where L and H are the number of hidden layers and
number of hidden nodes per layer, respectively. The hid-
den layers are made up of affine transformations of the
output of the previous layer αl(ξl−1) = Wlξl−1 + bl, where
ξl−1 ∈ RH for l = 2, . . . , L + 1 and ξ0 = x. The func-
tions {βl}Ll=1 represent nonlinear activation functions that
ensure DNNs are universal function approximators under
relatively mild conditions Barron (1993). The network
parameters θ = {W1, b1, . . . ,WL+1, bL+1} then correspond
to all the weights and biases that appear in the network.

The DNN parameters are trained by minimizing some loss
function – commonly chosen to be the mean squared error
(MSE) for regression tasks – evaluated over D:

θ? = argmin
θ

1

Ns

Ns∑
i=1

‖πmpc(xi)−N (xi; θ)‖2 (11)

which results in the following DNN-based approximate
MPC πapprox(x) = N (x; θ?) that satisfies

‖πmpc(x)− πapprox(x)‖ ≤ εapprox, ∀x ∈ X (12)

for some εapprox > 0. To generate the training data D,
we must select the relevant state space X. Although a
natural choice is the feasible region of the MPC law, i.e.,
X = XN , this results in some practical challenges that
are important to highlight. First, the determination of the
region of attraction for nonlinear systems is computation-
ally intractable and can only be done approximately using
outer reachable set approximations, e.g., Althoff et al.
(2008). Second, it is unlikely that all states x ∈ XN are
equally likely to be observed during closed-loop operation.
Therefore, in this work we propose an alternative method
based on a control-oriented representation of X defined in
terms of the following tube of closed-loop trajectories

X =
⋃Nsim

t=0 X(t), (13)

Algorithm 1 Control-oriented generation of training data

Input: f , πmpc, X0, W, ε, Nsim, and Nmc = Ns

Nsim
.

Output: Training set D.

1: for i = 1 to Nmc do
2: x← random sample from the set X0

3: for k = 1 to Nsim do
4: u← πmpc(x)
5: D ← D ∪ {(x, u)}
6: w ← random sample from the set W
7: x← f(x, u) + w
8: if ‖x− xe‖ ≤ ε then
9: break

where X(t) denotes the reachable set of states at time step
t and Nsim denotes the number of simulation steps. The
reachable set is defined recursively as follows

X(t+ 1) = {f(x(t), πmpc(x(t))) | x ∈ X(t)}, (14)

for t = 0, . . . , Nsim−1 given initial states X(0) = X0. The
set X0 plays an important role in that X will grow larger
in response to larger X0 – thus, from the perspective of
training, it is desired to limit the size of X0 as much as
possible. This strategy also gives us the flexibility to con-
sider both batch (finite time) and continuous operations
wherein Nsim should be large enough so that the system
(approximately) reaches steady state.

We cannot find X exactly due to the nonlinear dynamics
of the system; however, we can generate a collection of Ns
random samples in X using our proposed control-oriented
learning procedure summarized in Algorithm 1. A key step
in the algorithm is the incorporation of an “artificial” (or
simulated) disturbance that is randomly drawn from a
set W = {w | ‖w‖ ≤ w̄}, which accounts for the facts
that: (i) πapprox is only an approximation to πmpc so the
resulting closed-loop trajectories will slightly differ and
(ii) unexpected disturbances may occur online that cause
our system to deviate from the nominal dynamics (1).
The upper bound w̄ thus represents a tuning parameter
that can be interpreted as a measure of confidence in
the nominal model predictions. The closed-loop system is
simulated until either final time Nsim or the equilibrium
condition is reached (within some tolerance ε).

4. KKT-DERIVED ONLINE ADAPTIVE
CORRECTION SCHEME WITH PROBABILISTIC

VERIFICATION

4.1 Online adaptive correction

The approximation error introduced by the DNN-based
MPC law may result in unwanted performance losses. A
meaningful performance measure for a control policy π(x)
is the cost along the closed-loop trajectory.

Definition 4. (Closed-loop performance). Consider the sys-
tem (1), under some state feedback control policy u =
π(x). The closed-loop performance for this system over T
steps, starting from an initial state x0 ∈ X0 is defined as

V πT (x0) :=

T−1∑
k=0

` (xπ(k;x0), π(xπ(k;x0))) , (15)

and asymptotic performance corresponds to T →∞.

The asymptotic performance loss can then be stated as,

Loss = ‖V πapprox
∞ (x0)− V πmpc

∞ (x0)‖, (16)

In order to minimize the asymptotic performance losses
due to the approximation errors, it may be desirable to
adapt the approximate policy online. However, V

πmpc

T (x0)
is not available online to quantify the performance loss
(16). From Lemma 1, we know that the solution to the
steady-state optimization problem (6) is an asymptoti-
cally stable equilibrium point of the closed loop system
x(t+ 1) = f(x(t), πmpc(x(t))). Hence the asymptotic per-
formance of the closed loop system satisfies the KKT
conditions of (6). For any equilibrium point x = f(x, u).
the steady-state optimization problem (6) can implicitly
be written only in terms of u as

min
u

˜̀(u), s.t. g(u) ≤ 0, (17)

and the KKT conditions read as

∇˜̀(u) +∇g(u)Tλ = 0, (18a)

g(u) ≤ 0, λTg(u) = 0, λ ≥ 0, (18b)

where the constraints (6c) are collectively denoted as g(u)
and the subset of the active constraints is denoted by
gA(u) ⊆ g(u). Since we do not know the Lagrange multipli-
ers λ, the stationarity condition (18a) can be equivalently

stated using the reduced gradient given by NT∇˜̀(u) = 0
where N lies in the nullspace of the active constraint gra-
dients, that is, NT∇gTA(u) = 0 (Krishnamoorthy and Sko-
gestad, 2019). Assumption 2 ensures that the active con-
straint gradient has full row rank and that the nullspace
N is well defined.

Assumption 4. The closed-loop performance using the
approximate policy πapprox(·) converges to some point
(x′e, u

′
e) such that x′e = f(x′e, u

′
e).

Although the notion of convergence in Assumption 4 is
central here, it is not guaranteed by design. Validation
methods to efficiently ensure probabilistic guarantees that
satisfies Assumption 4 will be provided in Section 4.2.
When training an approximate policy πapprox using the
MPC policy πmpc, we want to converge to the same
limit point (xe, ue), where the KKT conditions (18) hold.
However, due to the the approximation error, we have

`(xπ(k;x0), πapprox(xπ(k;x0)))→ `(x′e, u
′
e) as k →∞

From Lemma 1, the limit point (x′e, u
′
e) obtained using

the approximate policy will not be a KKT point of
the optimization problem if (x′e, u

′
e) 6= (xe, ue) (cf. (7)).

Therefore, the deviation from the KKT condition indicates
asymptotic performance losses stemming from the MPC
policy approximation.

For offset-free asymptotic performance, we can then adapt
the approximate control law online to ensure that (x′e, u

′
e)

satisfies the KKT conditions (18).

Theorem 2. Let πapprox be an approximation of the eco-
nomic MPC policy πmpc, trained using data collected
from Algorithm 1, that satisfies Assumption 4. Offset-free
asymptotic performance can then be obtained by using the
modified approximate policy

u = πapprox(x) + δu =: π̃approx(x), (19)

where δu is computed as

˙δu = −K
[

gA(u)

NT∇˜̀(u)

]
, (20)

Plant

DNN-MPC
πapprox(x)

Performance
monitoring−

K

s

δu

+

u x

∇ℓ(x, u)

π̃approx(x)

Fig. 1. Schematic of the proposed modified approximate
control policy for offset-free asymptotic performance.

Proof Under the modified approximate policy π̃approx(x),
the outer loop δu adjusts the control input if the KKT
conditions of (17) are not satisfied. The outer loop con-

verges when ˙δu = 0, i.e., gA(x, πapprox(x)) = 0 and

NT∇˜̀(x, πapprox(x)) = 0, which implies that the limit
point (x′e, u

′
e) obtained using π̃approx(x) satisfies the KKT

conditions of the steady-state optimization problem (6),
and hence (x′e, u

′
e) = (xe, ue). �

Since δu is based on the KKT conditions of the steady-
state optimization problem, the gain K in the modi-
fied control policy must be chosen such that it does
not significantly affect the dynamics, but adjusts the
asymptotic performance. One choice for K is given by

K ∝
[
∇gA(u)

NT∇2 ˜̀(u)

]−1
to account for the multivariable

interactions. The schematic representation of the proposed
scheme is shown in Fig. 1.

4.2 Offline Probabilistic Verification

We assumed the approximate MPC policy πapprox ensures
convergence to some equilibrium point in Theorem 2,
which would hold if we could learn an exact representation,
i.e., εapprox = 0. However, this is not practically possible
for several reasons including a finite amount of training
data, local optimization strategies for approximately solv-
ing (11), and an a priori selected DNN structure that may
be of insufficient complexity to exactly represent πmpc.

Instead of trying to enforce Assumption 4 in our training
procedure, we instead look to verify it holds by developing
a stability test in terms of the following binary perfor-
mance indicator:

φ(x0) =

{
0 if closed-loop system converges for x0,

1 otherwise.

The stability test can then be stated mathematically as
φ(x0) = 0 for all x0 ∈ X0, which is equivalently stated
as maxx0∈X0 φ(x0) = 0. Since this is a challenging opti-
mization, we resort to computing a probabilistic estimate
of the worst-case performance by associating a probability
measure PrX0 over the sample space X0. We then generate
Nv i.i.d. samples of x0 and define the empirical maximum

ÊNv
= max
i=1,...,Nv

φ(x
(i)
0). (21)

Using seminal results in (Tempo et al., 1997, Theorem
3.1), we can establish that, for any accuracy ε ∈ (0, 1)
and confidence δ ∈ (0, 1), if

Nv ≥
log 1

δ

log 1
1−ε

(22)

then

PrXNv
0
{PrX0

{φ(x0) > ÊNv
} ≤ ε} ≥ 1− δ (23)

This bound is independent of the size of the set X0

and the probability measure PrX0
. Note there are two

levels of probabilities since ÊNv is a random variable that

depends on the multisample x0 = {x(1)0 , . . . , x
(Nv)
0 }. The

scenario bound (23) can be roughly interpreted as ensuring
the set of points greater than the estimated worst-case
performance has a measure smaller than ε, and this is true
with probability at least 1− δ.
To apply (23) in practice, we must simulate the closed-
loop system x(t + 1) = f(x(t), π̃approx(x(t))) under Nv
randomly selected initial conditions to determine ÊNv

. If

Nv is chosen to satisfy (22), then ÊNv = 0 and hence
all closed-loop trajectories are stable. Given the online
adaptive correction scheme, this implies that the approx-
imate control policy π̃approx converges to the optimal
equilibrium (xe, ue). On the other hand, if any closed-

loop trajectory is unstable, then ÊNv
= 1 and we have

certified that π̃approx does not meet our requirements and
we must repeat the training procedure 1 – this may involve
a more advanced hyperparameter optimization strategy
and/or augmentation of the training data set D. Interested
readers are referred to Paulson and Mesbah (2020b) and
Krishnamoorthy (2020), respectively, for recent papers
that tackle these two important problems.

5. ILLUSTRATIVE EXAMPLE

We use a benchmark Williams-Otto reactor to illustrate
the proposed method. Two input streams FA and FB
are fed to the reactor with pure components A and B,
respectively. Useful products P and E are formed by a
series of chemical reactions

A+B → C k1 = 1.6599× 106e−6666.7/Tr

B + C → P + E k2 = 7.2177× 108e−8333.3/Tr

C + P → G k3 = 2.6745× 1012e−11111/Tr

The process has nx = 6 states and nu = 2 inputs. Feed-
stream FA is an unmeasured disturbance and the process
is controlled using feedstream FB and reactor temperature
Tr. The stage cost is given by ` = −1043.38xP (FA+FB)−
20.92xE(FA + FB) + 79.23FA + 118.34FB , where xE and
xP denote the mass fractions of components E and P ,
respectively. The economic MPC problem is setup with a
prediction horizon of N = 60 samples, with a sampling
time of 1 min.
1 Note that the probabilistic verification can also be performed on
the approximate policy πapprox to validate that the aapproximate
policy converges to some equilibrium point (x′e, u

′
e) .

Table 1. Closed-loop performance of the MPC poli-
cies πmpc, πapprox, and π̃approx.

πmpc πapprox π̃approx

V πT -6.2122×106 -6.1078×106 -6.2083×106

Loss – 1.044×105 3877

Fig. 2. Closed-loop cost of the MPC policies πmpc(x)
(solid black), πapprox(x) (solid red) and the proposed
modified approximate policy π̃approx(x) (dashed red).

The training dataset was generated using Algorithm 1 with
Nm = 20, Nsim = 50, and ε = 10−3. X0 was chosen to
be a box set with uniform distribution with each state
varying between 0 and 0.7. W was chosen to be a normal
distribution with zero mean and a standard deviation of
10−2. The MPC policy πmpc is obtained by solving the
optimal control problem (2), which is setup using CasADi
v3.5.1 (Andersson, 2013), and the resulting NLP is solved
using IPOPT (Wächter and Biegler, 2006). The MPC pol-
icy is approximated using a deep neural network with 1
hidden layer with 5 neurons with rectified linear units
(ReLU) as the activation function. These hyperparameters
were chosen using Bayesian optimization (Snoek et al.,
2012). The neural network was then trained using the
Levenberg-Marquardt algorithm from the MATLAB v2019b
deep learning toolbox. For an accuracy of ε = 0.05 and
confidence δ = 0.05, the closed-loop system was simulated
for Nv = 59 initial conditions that were randomly gener-
ated to ensure that ÊNv = 0.

The process is simulated with the MPC policy πmpc(x)
(benchmark), the approximate policy πapprox(x), and the
proposed modified approximate policy π̃approx. The simu-
lation starts with a feed flowrate FA = 1.3 kg/s, which
changes to FA = 1.4 kg/s at t = 600. Fig. 2 shows
the closed-loop performance with πmpc(x) (solid black),
πapprox(x) (solid red), and the proposed modified approx-
imate policy π̃approx(x) (dashed red). As can be seen,
the approximate policy πapprox leads to a steady-state
offset compared to the closed-loop solution obtained with
πmpc, whereas the closed-loop performance π̃approx leads
to an offset-free asymptotic performance. The closed-loop
performance V πT (x0) for the three different policies are also
summarized in Table 1. The modified approximate policy
leads to a better performance, since the process is driven
to the optimal equilibrium point at steady-state.

6. CONCLUSIONS AND FUTURE WORK

This paper addressed the problem of performance loss
due to approximating an economic MPC law using deep
neural networks. It was shown that we can account for
the approximation errors and reduce performance losses
by using a KKT-derived adaptive correction scheme. We
also presented an offline probabilistic verification scheme

to establish convergence, which is central to the proposed
adaptive correction scheme. An extension of the online
correction scheme to handle structural mismatch would
entail the use of plant gradients instead of model gradients.

REFERENCES

Althoff, M., Stursberg, O., and Buss, M. (2008). Reach-
ability analysis of nonlinear systems with uncertain pa-
rameters using conservative linearization. In Proceedings
of the 47th IEEE Conference on Decision and Control,
4042–4048.

Andersson, J. (2013). A General-Purpose Software Frame-
work for Dynamic Optimization. Ph.D. thesis, Arenberg
Doctoral School, KU Leuven.

Angeli, D., Amrit, R., and Rawlings, J.B. (2011). On
average performance and stability of economic model
predictive control. IEEE Transactions on Automatic
Control, 57(7), 1615–1626.

Barron, A.R. (1993). Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Transac-
tions on Information Theory, 39(3), 930–945.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos,
E.N. (2002). The explicit linear quadratic regulator for
constrained systems. Automatica, 38(1), 3–20.

Bertsekas, D.P. (2019). Reinforcement learning and opti-
mal control. Athena Scientific Belmont, MA.

Chakrabarty, A., Dinh, V., Corless, M.J., Rundell, A.E.,
Żak, S.H., and Buzzard, G.T. (2017). Support vector
machine informed explicit nonlinear model predictive
control using low-discrepancy sequences. IEEE Trans-
actions on Automatic Control, 62(1), 135–148.

Chen, S., Saulnier, K., Atanasov, N., Lee, D.D., Kumar,
V., Pappas, G.J., and Morari, M. (2018). Approximat-
ing explicit model predictive control using constrained
neural networks. In Proceedings of the American Control
Conference, 1520–1527.

Csekő, L.H., Kvasnica, M., and Lantos, B. (2015). Ex-
plicit MPC-based RBF neural network controller design
with discrete-time actual kalman filter for semiactive
suspension. IEEE Transactions on Control Systems
Technology, 23(5), 1736–1753.

Diehl, M., Amrit, R., and Rawlings, J.B. (2010). A Lya-
punov function for economic optimizing model predic-
tive control. IEEE Transactions on Automatic Control,
56(3), 703–707.

Drgoňa, J., Picard, D., Kvasnica, M., and Helsen, L.
(2018). Approximate model predictive building control
via machine learning. Applied Energy, 218, 199–216.

Grüne, L. and Pannek, J. (2017). Nonlinear model pre-
dictive control. In Nonlinear Model Predictive Control,
45–69. Springer.

Hertneck, M., Köhler, J., Trimpe, S., and Allgöwer, F.
(2018). Learning an approximate model predictive con-
troller with guarantees. IEEE Control Systems Letters,
2(3), 543–548.

Hirose, N., Tajima, R., and Sukigara, K. (2018). MPC
policy learning using DNN for human following control
without collision. Advanced Robotics, 32(3), 148–159.

Karg, B. and Lucia, S. (2020). Efficient representation and
approximation of model predictive control laws via deep
learning. IEEE Transactions on Cybernetics, 50(9),
3866–3878.

Krishnamoorthy, D. (2020). Sensitivity-based data aug-
mentation for learning an approximate model predictive

controller. arXiv preprint arXiv:2009.07398.
Krishnamoorthy, D. and Skogestad, S. (2019). Online

process optimization with active constraint set changes
using simple control structures. Industrial & Engineer-
ing Chemistry Research, 58(30), 13555–13567.

Paulson, J.A. and Mesbah, A. (2020a). Approximate
closed-loop robust model predictive control with guaran-
teed stability and constraint satisfaction. IEEE Control
Systems Letters, 4(3), 719–724.

Paulson, J.A. and Mesbah, A. (2020b). Data-driven sce-
nario optimization for automated controller tuning with
probabilistic performance guarantees. IEEE Control
Systems Letters, 5(4), 1477–1482.

Snoek, J., Larochelle, H., and Adams, R.P. (2012). Prac-
tical Bayesian optimization of machine learning algo-
rithms. In Advances in Neural Information Processing
Systems, 2951–2959.

Tempo, R., Bai, E.W., and Dabbene, F. (1997). Probabilis-
tic robustness analysis: explicit bounds for the minimum
number of samples. Systems and Control Letters, 30,
237–242.

Tøndel, P., Johansen, T.A., and Bemporad, A. (2003). An
algorithm for multi-parametric quadratic programming
and explicit mpc solutions. Automatica, 39(3), 489–497.

Wächter, A. and Biegler, L.T. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
programming, 106(1), 25–57.

Zhang, X., Bujarbaruah, M., and Borrelli, F. (2019). Safe
and near-optimal policy learning for model predictive
control using primal-dual neural networks. In Proceed-
ings of the American Control Conference, 354–359.

Appendix A. PROOF OF THEOREM 1

Let x?(·|t) and u?(·|t) denote the optimal state and
input sequence for (2) at time t, respectively. We define
the following feasible candidate sequences

x̃(·|t+ 1) = {x?(1|t), · · · , x?(N |t), xe}
ũ(·|t+ 1) = {u?(1|t), · · · , u?(N − 1|t), ue},

since (xe, ue) is assumed to be a feasible equilibrium pair
and x?(N |t) = xe from (2d). We must first establish a
bound on the optimal cost difference to use the Lyapunov
stability framework

Ṽ (x(t+ 1))− Ṽ (x(t))

≤
N−1∑
k=0

L(x̃(k|t+ 1), ũ(k|t+ 1))−
N−1∑
k=0

L(x?(k|t), u?(k|t))

≤ L(xe, ue)− L(x̃0, ũ0).

Now, from (5) and (8), we can derive

Ṽ (x(t+ 1))− Ṽ (x(t))

≤ `(xe, ue) + λ(xe)− λ(f(xe, ue))

− `(x0, u0)− λ(x0) + λ(f(x0, u0))

≤ −α(‖x− xe‖).
This implies Ṽ (x) is a Lyapunov function for the nominal
closed-loop system (with recursive feasibility guaranteed
by the terminal equilibrium constraint) such that the
stability claim immediately follows.

