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Abstract: Mathematical modelling supports the understanding of basic biological mechanisms
and is the basis for bioprocess simulation, prediction, control and optimization. Dynamic
macroscopic models can be derived from the concept of elementary flux modes (EFMs), which
provide a comprehensive representation of all possible pathways through a metabolic network.
As the number of EFMs drastically increases with the size of the metabolic network, a procedure
to reduce the number of EFMs and select the most informative ones is required. For this purpose,
this study proposes a methodology to select a minimal suboptimal set of elementary flux modes
allowing the development of reduced macroscopic models. The algorithm is divided into two
steps. First, the concept behind the cosine-similarity algorithm is extended for a large number
of EFMs to cut the initial set by removing all the collinear modes. Next, the algorithm is
used to extract only the most informative modes from the reduced set by means of a series of
optimization problems. The algorithm performance is illustrated with datasets from hybridoma
cultures in batch and perfusion modes, and two metabolic networks with different levels of
description.

Keywords: Macroscopic modelling, metabolic flux analysis, elementary flux modes, model
reduction

1. INTRODUCTION

In the last decades, mammalian cell cultures have been
widely used in laboratory settings particularly in the
field of vaccine research, cancer treatment and protein
therapeutics. Cells derived from animals, especially mam-
mals, have become fundamental to biomanufacturing of a
large number of biologics including monoclonal antibod-
ies (Sidoli et al., 2004; Niklas and Heinzle, 2012), viral
vaccines (Vester et al., 2010) and numerous proteins em-
ployed in the treatment of genetic diseases. For industrial
purposes, large-scale cell cultures present a great interest
despite some engineering challenges (Niu et al., 2013). To
tackle those issues and achieve high productivity and bet-
ter quality products, the development of accurate dynam-
ical models describing the metabolism of the cell shows
a meaningful added value, as the efficiency of these pro-
cesses can be further improved by means of model-based
optimization and control strategies. For this purpose, sev-
eral techniques have emerged over the years among which
methods for deriving macroscopic models from intracellu-
lar information contained in detailed metabolic networks.
Some of them are based on the concept of elementary
flux modes or extreme pathways (Stelling et al., 2002),
a notion consistent with the biological knowledge about
the organism (Gao et al., 2007) and which allows translat-
ing the metabolic network into macroscopic bioreactions
connecting extracellular substrates to products. However,
a major problem encountered when using this approach is

a combinatorial explosion in the number of EFMs with the
size of the metabolic network. Different approaches have
been proposed to tackle this issue, including the computa-
tion of a minimal set of EFMs without enumerating all of
them (Jungers et al., 2011; Machado et al., 2012) and the
selection of subsets of EFMs as candidate macro-reactions.
Following the latter approach, (Provost and Bastin, 2004;
Zamorano et al., 2013) introduce additional constraints
related to cell-specific uptake- or secretion rates so as
to reduce the dimensionality of the solution space and
develop dynamic models. (Song and Ramkrishna, 2009)
demonstrate that the number of EFMs can be reduced by
projection of the modes into yield space. (Naderi et al.,
2010) depict a simplified metabolic network by removing
all insignificant fluxes. In (Soons et al., 2010, 2011), an
optimization criterion compromising error, efficiency of the
modes, and model size is defined and EFMs are selected
based on ranking or controlled random search. A study
conducted by (Song et al., 2013) suggests how to reduce
the number of EFMs by grouping them into clusters and
computing an average EFM for each one. (Hebing et al.,
2016) propose a method which allows reducing the set
of EFMs by using a cosine-similarity algorithm followed
by the definition of a multi-objective genetic algorithm
to find a suitable set of EFMs. (Baroukh and Bernard,
2016) suggest methods based upon dynamic metabolic
flux analysis (DMFA), flux balance analysis (FBA) and
its extension, dynamical flux balance analysis (DFBA).
Recently, (Abbate et al., 2019) have formulated a linear



optimization problem in order to select the best set of
EFMs based on a relaxation criterion. The present study
extends this latter work to include a more efficient selec-
tion criterion to face larger sets of EFMs.
More specifically, this study proposes an algorithm called
Reducer of Elementary Modes (REM) in order to shorten
the computation time and select only the most informative
modes. First of all, the cosine-similarity algorithm intro-
duced in (Hebing et al., 2016) is extended to cut the initial
set of EFMs by removing all the collinear modes. Then,
the methodology is pursued to extract only the most infor-
mative modes from the reduced set by means of a series of
optimization problems. The algorithm works efficiently for
metabolic networks with size around 100 reactions, which
is typically the size of networks considered in most studies
aiming at the derivation/reduction of dynamic models.
In that respect, a minimal suboptimal set of EFMs is
obtained and can be directly used for the development
of macroscopic models.
This paper is organized as follows. The next section en-
compasses the problem statement and introduces the main
concepts relative to the metabolic network analysis. The
reduction algorithm is discussed in section 3. Section 4
presents the results of the test case studies. Experimental
data of hybridoma cultures in batch and perfusion modes
are analysed on the basis of two metabolic networks of dif-
ferent sizes and the outcomes of the reduction algorithm.
Finally, conclusions are drawn in section 5.

2. PROBLEM STATEMENT

As defined in (Nelson and Cox, 2008), the cell metabolism
is a set of enzyme-catalyzed transformations of organic
molecules taking place in a living cell and forming
metabolic pathways. The interconnection of such pathways
devises a so-called metabolic network of biochemical reac-
tions.
In metabolic engineering, a metabolic network is repre-
sented by a m × n stoichiometric matrix N where m stands
for the number of internal metabolites and n corresponds
to the number of reactions. With the purpose of analysing
a network, the principle of mass conservation of internal
metabolites is applied and accounting for the pseudo-
steady state assumption, we obtain an homogeneous sys-
tem of linear equations :

N.v = 0 (1)

where v ∈ Rn is the vector of network fluxes, also called
the extreme rays of the network. Moreover, network fluxes
are often constrained to positivity assuming that the direct
reactions prevail over their reverse counterparts :

v ≥ 0 (2)

Henceforth, system (1) under the positivity constraint (2)
constitutes a problem of non-negative linear algebra or
convex analysis whose solution space is a polyhedral cone
in the positive orthant.
To tackle this concern, a non-decomposability constraint
may be added to define a finite set of flux distributions.
To that extent, the concept of elementary flux modes is in-
troduced and can be interpreted as the simplest metabolic
pathways connecting substrates to products without accu-
mulation of metabolites. Therefore, these EFMs represent
the edges of the polyhedral cone constructed by the in-
tersection of the hyperplanes defined by the rows of N. In

Fig. 1. The reduction procedure - the REM algorithm

the last decades, some techniques have been highlighted
to compute the elementary flux modes, one of them being
implemented in the popular toolbox efmtool (Terzer and
Stelling, 2008).
In addition, constraints relative to the measurements of
extracellular fluxes can be defined through the so-called
stoichiometric matrix of extracellular measurements Ne.
This is a me × n matrix where me stands for the number
of extracellular measurements.
In this study, the concept of EFMs is used to translate the
metabolic network into macroscopic bioreactions in order
to derive dynamic macroscopic models particularly useful
in estimation and control. Nevertheless, for large metabolic
networks, a combinatorial explosion in the number of
elementary flux modes is observed justifying the use of
reduction methods of the initial set of the modes.

3. REDUCTION ALGORITHM

This section is devoted to the reduction algorithm used
to select a minimal suboptimal set of EFMs, denoted
Kreduced from an initial set K. The REM algorithm is in-
troduced as an iterative method based on the optimization
problem :

SSRq =

M∑
k=1

(
||Keφ(tk)− νm(tk)||22

)
(3)

min
φ(tk)

SSRq s.t. φ(tk) ≥ 0 (4)

where νm(tk) is the vector of uptake and excretion
rates for every time-step tk obtained from the measured
concentration profiles by means of smoothing splines and
differentiation methods and φ(t) represents a time-varying
decomposition of the flux νm(t) into a reduced set of modes
stored in Ke. SSRq is the sum of squared residuals and
determines if the observed phenotypes are part of the
solution space.

3.1 Pre-filtering of the Initial Set of EFMs

The first step of the REM algorithm relies on the concept
of cosine-similarity developed in (Hebing et al., 2016).
It performs a pre-reduction of the set of EFMs and is
likely to become necessary when this set is large. Basically,
the method can be broken down into two steps: (i) a
reduction step based on a collinearity test and the value
of a threshold χ allowing the cut and (ii) a validation
step based on the formulation of an optimization problem.
The first step consists in collinearity tests between the
elementary flux modes, i.e., if the cosine of the angle
between the extreme rays is larger than a defined threshold
χ, then the elementary modes are oriented in the same
direction and are redundant. The redundant modes are



thus eliminated and the remaining modes are stored in
the reduced matrix Ke. In the second step, a comparison is
achieved between the value of the indicator SSRq resulting
from the optimization problem formed by Eq. 3 and Eq. 4
and SSR0

q , defined as the best value of the indicator when
all the EFMs are considered without any reduction, i.e.
when the complete matrix K is considered (threshold χ =
1):

|SSR0
q − SSRq| < tol1 (5)

In this expression, tol1 is a tolerance, and if the above
inequality is not satisfied, the threshold χ defined in the
previous step induces the removal of essential informative
modes. To complete the algorithm, the approximation of
SSR0

q has to be considered. Indeed, the value of SSR0
q

can be easily computed for small metabolic networks,
but becomes a problem for larger metabolic networks.
The approach is again a 2-step process. The first step
is a reduction procedure based on the cosine-similarity
algorithm, where a threshold ι is a priori selected in order
to comprise the following objectives :

• to be close enough to one in order to keep the valuable
information contained in the initial set of elementary
flux modes ;
• to be far enough from one to obtain a smaller matrix

of EFMs and to reduce the computation time.

The value of this threshold ι is randomly selected but
adjusted by means of the second step, which is based on
the optimization problem composed of Eq. 3 and Eq. 4. It
consists in analysing the value of SSRq associated to the
threshold defined previously (ι) and the value of SSRq
associated to an increased threshold by an increment (ι+
δ). If the values of the successive SSRq become identical
after a number of iterations, SSR0

q is assumed to be
correctly approximated.

3.2 Further Reduction

To further reduce the number of EFMs and select a
minimal set of bioreactions, the second step of the REM
algorithm considers as inputs the reduced matrix of ele-
mentary flux modes Ke, the associated value of SSRq and
the target number of EFMs after the completion of the
reduction procedure. The output is then a minimal set of
EFMs under a matrix form, Kreduced. The method consists
in randomly removing an elementary mode using a random
number generator and formulating the optimization prob-
lem given by Eq. 3 and Eq. 4 where matrix Ke represents
the corresponding candidate matrix of EFMs.

If the updated value of the indicator (SSR∗
q) is relatively

close to the value of the indicator coming from the pre-
filtering (SSRq), then the EFM under question is defi-
nitely discarded. Otherwise, the EFM is kept because it
contains valuable information. This consists in checking
the following inequality:

|SSR∗
q − SSRq| < tol2 (6)

where tol2 represents a tolerance. The algorithm carries on
until the number of EFMs reaches the target number. It
is worth noting that the smaller the target set, the larger
the tolerance.

Whereas the cosine-similarity algorithm allows a geometric
interpretation of the EFMs selection process, the second

step of the REM algorithm mostly targets the repro-
duction of the measured data. The risk entailed in this
procedure is that an elementary flux mode representative
of some key biological process could be eliminated if the
rest of the EFMs achieves a faithful reproduction of the
measured data. Some sensitivity analysis can be performed
by running the REM algorithm a few times and examining
the variability in the resulting sets of EFMs. The global
procedure is illustrated in Fig. 1.

4. APPLICATION TO HYBRIDOMA CELL
CULTURES IN PERFUSION

To illustrate this study, experimental data from hybridoma
cell line HB58 producing antibodies type IgG1 are ex-
ploited. It involves four different cell cultures in perfusion
from which on-line measurements are available. The infor-
mation relative to the cell line, the media, the bioreactor
operation mode and the analysis methods are described in
(Niu et al., 2013). Two metabolic networks are considered,
with different levels of details, and the REM algorithm is
used to reduce the initial set of EFMs to a small subset
capable of reproducing the measured data.

4.1 Small Metabolic Network

The first metabolic network includes 24 reactions repre-
senting the central metabolism of hybridoma cells and is
presented in (Abbate et al., 2019). As depicted in Fig. 1,
the first step of the methodology consists in computing the
matrix E of EFMs by means of EFMtool. As discussed
in Sec. 2, this requires the definition of the stoichiomet-
ric matrix N . In addition, we consider five extracellular
measurements, i.e. glucose, lactate, glutamine, ammonia
and alanine. As discussed in (Provost and Bastin, 2004),
experimental measurements are used to deduce the stoi-
chiometry of the macro-reactions. Henceforth, the matrix
K is obtained as follows :

K = Ne.E (7)

In this case study, 11 elementary flux modes are obtained
inducing 10 possible macro-reactions (two EFMs are iden-
tical). The number of EFMs is therefore quite small and
the linear optimization problem developed in (Abbate
et al., 2019) can be formulated easily. The number of com-
binations of 5 bioreactions among 11 EFMs is explored and
the linear optimization problem is solved 462 times. The
best combination is obtained after a short computation
time. In order to test the REM algorithm, this reduction is
repeated here. Table 1 and Fig. 2 (left colorbar) present the
results provided by the pre-filtering. In this case, because
the number of EFMs is small, the value of SSR0

q can be
directly computed.

Table 1. Results of the pre-filtering step

Threshold # EFM SSRq
1.000 10 0.21530797 SSR0

q

0.980 9 0.21530797
0.975 8 0.21531374
0.970 7 0.22722035
0.960 5 0.43080000
0.940 3 0.68230000

Admitting a slight tolerance, the threshold of 0.975 is
selected which allows discarding two EFMs. The second



Fig. 2. Results of the pre-filtering for the small metabolic
network of 24 reactions (left colorbar) and for the
metabolic network of 70 reactions (right colorbar)

0 50 100 150 200 250 300

Time (h)

0

5

10

15

G
lc

 (
m

o
l.l

-1
)

0 50 100 150 200 250 300

Time (h)

0

10

20

30

40

L
ac

 (
m

o
l.l

-1
)

0 50 100 150 200 250 300

Time (h)

0

1

2

3

G
ln

 (
m

o
l.l

-1
)

0 50 100 150 200 250 300

Time (h)

0

2

4

6

8

N
H

4
 (

m
o

l.l
-1

)

0 50 100 150 200 250 300

Time (h)

0

0.5

1

1.5

2

2.5

A
la

 (
m

o
l.l

-1
)

Fig. 3. Time evolution of the measured concentrations in
dataset 4 by integration of the φ signals computed
through the method proposed in (Abbate et al., 2019)
(dark blue line) and the REM algorithm (dark orange
line) - comparison with the REM results obtained
with a larger metabolic network with 70 reactions and
either 5 (yellow line) or 22 extracellular measurements
(purple line).

step of the algorithm is then achieved with a target
number of EFMs equal to 5. Indeed, it is known that me

bioreactions are enough to fully explain the experimental
data (Provost and Bastin, 2004). The results are presented
in Fig. 3 as well as the results provided by the linear
optimization problem formulated in (Abbate et al., 2019)
for comparison purposes. This figure presents experimental
data from dataset 4 and shows that both algorithms give
the same results, thus validating the REM algorithm. The
macroscopic model is described by the following dynamic
mass-balance equations:

dGlc

dt
= −φ1X − 2φ4X − φ5X +D(Glcin −Glc) (8)

dLac

dt
= 2 φ1X + φ2X + 2 φ4X −DLac (9)

dGln

dt
= −φ2X − φ3X − 3 φ4X +D(Glnin −Gln) (10)

dN

dt
= 2 φ2X + φ3X + φ4X −DN (11)

dAla

dt
= φ3X +D(Alain −Ala) (12)

where Glcin, Glnin and Alain are the concentrations of
glucose, glutamine and alanine in the feed stream, D is the
dilution rate and X is the biomass. This model is identical
to the one obtained in (Abbate et al., 2019).

4.2 More Detailed Metabolic Network

A more detailed network (Fernandes de Sousa et al., 2015)
including glycolysis, tricarboxylic acid cycle, amino acids
metabolism, biomass and antibody synthesis is now con-
sidered. The network contains 70 reactions and 44 internal
metabolites. In the following sections, two different cases
are addressed. First, 22 extracellular measurements are
considered. Second, only five extracellular measurements,
identical to the ones considered in Sec. 4.1, are accounted
for. For both cases, the first step of the procedure consists
in computing the matrix of elementary flux modes, noted
E. In this case, the number of EFMs amounts to 22563
making difficult the use of existing methods, especially the
linear optimization problem introduced in (Abbate et al.,
2019). For this purpose, reduction algorithms are essential
and the REM algorithm is applied.

22-measurement case A prior step consists in evaluating
the stoichiometry of the macro-reactions by exploiting Eq.
7. As mentioned in Sec. 3.1, to avoid computational issues,
an approximation of the value of SSR0

q is needed.

Table 2. Cosine-similarity algorithm’s results

Threshold # EFM SSRq
0.990 2643 ?
0.980 2221 ?
0.970 1636 ?
0.960 1227 ?
0.950 948 0.0115 ι+4δSSRq ≈ SSR0

q

0.940 723 0.0115 ι+3δSSRq
0.930 555 0.0115 ι+2δSSRq
0.920 476 0.0118 ι+δSSRq
0.910 369 0.0126 ιSSRq
0.900 299 0.0129
0.890 246 0.0129
0.880 204 0.7740

The key point is the selection of an adequate threshold
to reduce the initial set of EFMs to a (much) smaller
subset. As shown in Table 2 and Fig. 2 (right colorbar), a
candidate threshold is 0.910 leading to a reduced matrix
of 369 EFMs. The value of the threshold is increased (by
an increment δ) and the evolution of SSRq is monitored.
In the present case, the value SSRq plateaus after a few
iterations and SSR0

q can be approximated at 0.0115. In
view of the tiny difference with the level just below, at
0.0118, a subset of 476 EFMs can be adopted to define the
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Fig. 4. Time evolution of the lactate concentration - results
of step 1 (blue line) and step 2 (orange)

matrix Ke. The next step in the algorithm is the definition
of a target number of 22 EFMs to explain the data
(corresponding to the number of extracellular species that
can be measured and included in the macroscopic model).
However, it is worth noting that a reduced dynamical
model with an even smaller dimension could be obtained
by imposing a smaller number of EFMs by means of a
principal component analysis. The time evolution of some
of the extracellular species is shown in the following figures
where the results from step 1 (the pre-filtering which
allows going from 22563 to 476 EFMs) are compared
to the ones of the second cut (from 476 to 22 EFMs -
or less). Fig. 4 illustrates the time evolution of lactate
concentration, Fig. 5 shows the evolution of ammonia
concentration and finally, Fig. 6 depicts the evolution
of methionine concentration along time for the four cell
cultures. The results are very satisfactory (also for the
species and/or datasets not shown). For assessing the
value of the approach, it is worth comparing the blue
curves (step 1) to the orange ones (step 2). For most
extracellular measurements, the fitting to the experimental
data is identical. This allows pointing the merits of the
REM algorithm which allows extracting only the most
informative EFMs among the initial set. However, for a few
concentration signals, slight differences may be observed
as depicted in Fig. 5 and Fig. 6. Nevertheless, the results
remain quite acceptable and differences can be explained
by the additional tolerance required to cut the set of
EFMs.

As mentioned in Sec. 3.2, the REM algorithm only ensures
that the information contained in the remaining modes
allows a correct reproduction of the measured data. As a
matter of fact, to evaluate the sensitivity of the solution,
the REM algorithm may be launched several times. In the
considered application, it appears that the replication of
the method with different seeds of the random number gen-
erator leads to the same set of elementary flux modes for
a specific value of the threshold. When a slight difference
in the latter is accepted, some variability in the selection
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Fig. 5. Time evolution of the ammonia concentration -
results of step 1 (blue line) and step 2 (orange)
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Fig. 6. Time evolution of the methionine concentration -
results of step 1 (blue line) and step 2 (orange)

of the modes is noticed but the reproduction of the data
is very satisfactory in all observed cases.

5-measurement case In this second case study, the whole
procedure is repeated considering only five extracellular
measurements, i.e. glucose, lactate, glutamine, ammonia
and alanine. First, the matrix K is computed by means
of Eq. 7. Second, the REM algorithm can be applied. As
depicted in Fig. 1, the first step consists in estimating
an approximation of SSR0

q . In view of the evolution of
the value of the indicator and the number of remained
modes shown in Table 3, 256 EFMs are considered after
the pre-filtering. The last step of the algorithm is finally
the definition of a target number of 5 EFMs to explain
the data. The results are represented in Fig. 3. The latter



modes allow obtaining the following mass-balance dynamic
model :

dGlc

dt
= −Φ1X − Φ5.X +D(Glcin −Glc) (13)

dLac

dt
= Φ2X −DLac (14)

dGln

dt
= −3, 6926 Φ4.X +D(Glnin −Gln) (15)

dN

dt
= Φ3X −DN (16)

dAla

dt
= 2 Φ5X +D(Alain −Ala) (17)

Table 3. Results of the pre-filtering

Threshold # EFM SSRq
0.980 302 2.04425 × 10−4 SSR0

q

0.970 282 2.04425 × 10−4

0.920 256 2.04420 × 10−4

0.850 249 0.9059

Another interesting observation is the comparison of the
results obtained based on the two different networks for
the 5 concentrations that are common to the two models.
This comparison is presented in Fig. 3 for dataset 4 and
shows that the EFMs inferred from the larger metabolic
network allow a better reproduction of the experimental
data. This motivates the use of more detailed networks to
capture the observed phenotypes.

5. CONCLUSION

This work proposes a procedure for reducing an initially
large set of elementary flux modes to a small subset which
can be exploited to establish dynamic macroscopic models.
First, the algorithm introduced in (Hebing et al., 2016) is
adapted and exploited in order to eliminate the collinear
EFMs. Second, the number of EFMs is further reduced to
a target number by eliminating the less informative EFMs.
The procedure is effective and provides promising results
as illustrated in three examples. Further research entails
the identification of kinetic models and the consideration
of larger metabolic networks and other datasets in order
to consolidate the observations and refine the algorithm.
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