Aylward, E., Parrilo, P.A., and Slotine, J.J. (2006). Algorithmic search for contraction metrics via SOS programming. In 2006 American Control Conference, 6–pp. IEEE. Boyd, S., Boyd, S.P., and Vandenberghe, L. (2004). Convex optimization. Cambridge university press. Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. SIAM. do Carmo, M. (1992). Riemannian Geometry. Mathematics (Boston, Mass.). Birkhauser. Ebenbauer, C. and Allgower, F. (2006). Analysis and design of polynomial control systems using dissipation inequalities and sum of squares. Computers & Chemical Engineering, 30, 1590–1602. Goodwin, G.C., Graebe, S.F., Salgado, M.E., et al. (2001). Control system design. Upper Saddle River, NJ: Prentice Hall. Kubicek, M., Hofmann, H., Hlavacek, V., and Sinkule, J. (1980). Multiplicity and stability in a sequence of two nonadiabatic nonisothermal CSTR. Chemical Engineering Science, 35(4), 987–996. Lofberg, J. (2004). Yalmip : A toolbox for modeling and optimization in matlab. In In Proceedings of the CACSD Conference. Lohmiller, W. and Slotine, J.J.E. (1998). On contraction analysis for non-linear systems. Automatica, 34(6), 683– 696. Lopez, B.T. and Slotine, J.J.E. (2019). Contraction metrics in adaptive nonlinear control. arXiv preprint arXiv:1912.13138. Manchester, I.R. and Slotine, J.J.E. (2014). Control contraction metrics and universal stabilizability. IFAC Proceedings Volumes, 47(3), 8223–8228. Manchester, I.R. and Slotine, J.J.E. (2017). Control contraction metrics: Convex and intrinsic criteria for nonlinear feedback design. IEEE Transactions on Automatic Control, 62(6), 3046–3053. Manchester, I.R. and Slotine, J.J.E. (2018). Robust con- trol contraction metrics: A convex approach to nonlin- ear state-feedback H∞ control. IEEE Control Systems Letters, 2(3), 333–338. Parrilo, P.A. (2000). Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology, Pasadena, California. Sturm, J.F. (1999). Using SeDuMi 1.02, a matlab toolbox for optimization over symmetric cones. Optimization Methods and Software, 11(1-4), 625–653. Wang, R. and Bao, J. (2017). Distributed plantwide control based on differential dissipativity. International Journal of Robust and Nonlinear Control, 27(13), 2253– 2274. Wang, R., Manchester, I.R., and Bao, J. (2017). Distributed economic mpc with separable control contrac- tion metrics. IEEE control systems letters, 1(1), 104–109.