Bengio, Y., Courville, A., Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1798-1828. Chen, J., & Zhao, C. (2021). Exponential Stationary Subspace Analysis for Stationary Feature Analytics and Adaptive Nonstationary Process Monitoring. IEEE Transactions on Industrial Informatics. Chen, Z., Ding, S. X., Peng, T., Yang, C., Gui, W. (2017). Fault detection for non-Gaussian processes using generalized canonical correlation analysis and randomized algorithms. IEEE Transactions on Industrial Electronics, 65(2), 1559-1567. Chen, Z., Liu, C., Ding, S., Peng, T., Yang, C., Gui, W., Shardt, Y. (2020). A Just-In-Time-Learning Aided Canonical Correlation Analysis Method for Multimode Process Monitoring and Fault Detection. IEEE Transactions on Industrial Electronics. Cuentas, S., Peñabaena-Niebles, R., Garcia, E. (2017). Support vector machine in statistical process monitoring: a methodological and analytical review. The International Journal of Advanced Manufacturing Technology, 91(1-4), 485-500. Geladi, P., Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica chimica acta, 185, 1-17. Botev, Z. I., Grotowski, J. F., & Kroese, D. P. (2010). Kernel density estimation via diffusion. The annals of Statistics, 38(5), 2916-2957. Jackson, J. E. (2005). A user's guide to principal components (Vol. 587). John Wiley & Sons. Kumar, K. M., Reddy, A. R. M. (2016). A fast DBSCAN clustering algorithm by accelerating neighbor searching using Groups method. Pattern Recognition, 58, 39-48. Tan, S., Wang, F., Peng, J., Chang, Y., Wang, S. (2012). Multimode process monitoring based on mode identification. Industrial & Engineering Chemistry Research, 51(1), 374-388. Wu, H., Zhao, J. (2020). Self-adaptive deep learning for multimode process monitoring. Computers & Chemical Engineering, 141, 107024. Yan, X., Yang, J., Sohn, K., Lee, H. (2016, October). Attribute2image: Conditional image generation from visual attributes. In European Conference on Computer Vision (pp. 776-791). Springer, Cham. Yu, J., Qin, S. J. (2008). Multimode process monitoring with Bayesian inference‐based finite Gaussian mixture models. AIChE Journal, 54(7), 1811-1829. Yu, W., Zhao, C. (2018). Recursive exponential slow feature analysis for fine-scale adaptive processes monitoring with comprehensive operation status identification. IEEE Transactions on Industrial Informatics, 15(6), 3311-3323. Zhang, H., Shang, J., Yang, C., Sun, Y. (2020). Conditional Random Field for Monitoring Multimode Processes with Stochastic Perturbations. Journal of the Franklin Institute. Zhao, C., Chen, J., Jing, H. (2020). Condition-Driven Data Analytics and Monitoring for Wide-Range Nonstationary and Transient Continuous Processes. IEEE Transactions on Automation Science and Engineering. Zhao, C., Huang, B. (2018). A full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis. AIChE Journal, 64(5), 1662-1681. Zhao, C., Wang, F., Lu, N., Jia, M. (2007). Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes. Journal of Process Control, 17(9), 728-741. Zhao, C., Wang, W., Qin, Y., Gao, F. (2015). Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitoring. Industrial & Engineering Chemistry Research, 54(12), 3154-3166.