Alvarez, J., Baratti, R., Tronci, S., Grosso, M., and Schaum, A. (2018). On the stochastic global-nonlinear dynamics of a class of two-state two-parameter non- isothermal CSTRs. Journal of Process Control, 72, 1–16. Andronov, A. and Pontryagin, L. (1937). Système grossiers. Dokl. Akad. Nauk., SSSR, 14, 247–251. Bailey, J.E. and Ollis, D.F. (1986). Biochemical Engineer- ing Fundamentals. McGraw-Hill. Balzano, A., Tronci, S., and Baratti, R. (2010). Ac- curate and efficient solution of distributed dynamical system models. volume 28 of Computer Aided Chemical Engineering, 421 – 426. doi:https://doi.org/10.1016/ S1570-7946(10)28071-9. Baratti, R., Tronci, S., Schaum, A., and Alvarez, J. (2016). Dynamics of nonlinear chemical process with multi- plicative stochastic noise. In Proceedings of the 11th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems, 869–874. Baratti, R., Tronci, S., Schaum, A., and Alvarez, J. (2018). Open and closed-loop stochastic dynamics of a class of nonlinear chemical processes with multiplicative noise. Journal of Process Control, 66, 108–121. Campillo, F., Joannides, M., and Larramendy-Valverde, I. (2014). Approximation of the fokker–planck equation of the stochastic chemostat. Math. and Comp. in Sim., 99, 31–53. Chen, Z. and Zhang, T. (2013). Dynamics of a stochas- tic model for continuous flow bioreactor with contois growth rate. J. Math. Chem., 51, 1076–1091. Horsthemke, W. and Lefever, R. (1984). Noise-Induced Transitions: Theory and Applications in Physics, Chem- istry, and Biology. Springer-Verlab Berlin Heidelberg. Jazwinski, A.H. (1970). Stochastic Processes and Filtering Theory. Academic Press, New York. Krstic, M. and Deng, H. (1998). Stabilization of Nonlinear Uncertain Systems. Springer-Verlag London. Liu, S. and Krstic, M. (2012). Stochastic Averaging and Stochastic Extremum Seeking. Springer-Verlag London. MacGregor, J. and Kourti, T. (1995). Statistical process control of multivariate processes. Control. Eng. Prac- tice, 3(3), 403–414. Meng, X., Wang, L., and Zhang, T. (2016). Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment. J. Appl. Anal. and Comp., 6, 865–875. Papoulis, A. and Pillai, S.U. (2002). Probability, Random Variables, and Stochastic Processes. McGraw-Hill, Eu- rope. Åström, K.J. (1970). Introduction to stochastic control theory. Risken, H. and Frank, T. (1996). The Fokker-Planck equa- tion: Methods of Solution and Applications. Springer- Verlab Berlin Heidelberg. Schaum, A., Alvarez, J., and Lopez, T. (2012). Saturated PI control for continuous bioreactors with Haldane ki- netics. Chemical Engineering Science, 68(1), 520 – 529. Smith, H. and Waltman, P. (1995). Theory of the Chemo- stat. Dynamics of Microbial Competition. Cambridge Studies in Mathematical Biology. Cambridge University Press. Stephanopoulos, G., Aris, B., and Fredrickson, A. (1979). A stochastic analysis of the growth of competing mi- crobial populations in a continuous biochemical reactor. Math. Biosci, 45, 99–135. Sun, S., Sun, Y., Zhang, G., and Liu, X. (2017). Dynamical behavior of a stochastic two-species monod competition chemostat model. App. Math. and Comp., 298, 152–170. Tronci, S., Grosso, M., Alvarez, J., and Baratti, R. (2011). On the global nonlinear stochastic dynamical behavior of a class of exothermic cstrs. J. Process Control, 21 (9), 1250–1264. doi:10.1016/j.jprocont.2011.07.014. Voulgarelis, D., Velayudhan, A., and Smith, F. (2018). Stochastic analysis of a full system of two competing populations in a chemostat. Chem. Eng. Sci, 175, 424– 444. Wang, L., Jiang, D., Wolkowicz, G.S.K., and O’Regan, D. (2017). Dynamics of the stochastic chemostat with monod-haldane response function. Sci. Reports, 7, 1–16. Zhang, T., Chen, Z., and Han, M. (2014). Dynamical analysis of a stochastic model for cascaded continuous flow bioreactors. J. Math. Chem., 52, 1441–1459.