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Abstract: Model-free reinforcement learning has been recently investigated for use in chemical
process control. Through the iterative creation of an approximate process model, control actions
are able to be explored and optimal policies generated. Typically, this approximate process
model has taken the form of a neural network that is continuously updated. However when
small quantities of historical data are available, for example in novel processes, neural networks
tend to over-fit to data providing poor performance. In this paper Gaussian processes are
used as a method of function approximation to describe the action-value function of a non-
isothermal semi-batch reactor. Through the use of analytical uncertainty obtained from Gaussian
process predictions, trade off between exploration and exploitation is enabled, allowing for
efficient generation of effective policies. Importantly Gaussian processes also enable probabilistic
constraint violation to be modelled, ensuring safe constraint satisfaction throughout the learning
procedure. On application to the in-silico case study, a safe, effective policy was generated
utilising only 100 evaluations of process trajectory with no prior knowledge of the process
dynamics. A result that would require significantly more trajectory evaluations when compared
to a neural network based approach.
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1. INTRODUCTION

The control and optimisation of nonlinear stochastic pro-
cesses poses a complex task for existing control schemes.
Typically, the approach provided by direct optimal control
(DOC) necessitates methods to simultaneously account
for process stochasticity and handle constraints. This of-
ten requires assumptions regarding the nature of process
uncertainty and the manner in which it is propagated.
Furthermore, DOC methods are dependent upon the avail-
ability of an accurate model of the physics of the under-
lying process for online computation of optimal control
actions. In the case of nonlinear, stochastic processes, such
descriptions are often difficult to identify and provide an
increase in online computational cost. This is discussed
further in Mayne (2015); Forbes et al. (2015). An alterna-
tive control solution is provided in the form of model-free
reinforcement learning (RL).

1.1 Model-Free Reinforcement Learning in the Chemical
Process Industries

The application of model-free RL to chemical process
control has been investigated for many years, dating back
as far as the early 1990s, as presented by Hoskins and
Himmelblau (1992). Since then, the wider field of RL
has observed impressive breakthroughs through algorithm

development in game-based control benchmarks e.g. Sil-
ver et al. (2018). Many of these algorithms have been
demonstrated within the context of process control. In
Spielberg et al. (2019), the authors present an actor-critic
algorithm for control through a number of case studies,
including a high purity distillation column. In Lee and
Lee (2006), an action-value method is presented in the
context of both process control and scheduling. A num-
ber of publications have also investigated application of
RL to the control of nonlinear stochastic processes as
demonstrated by Ma et al. (2019); Lee and Lee (2005);
Petsagkourakis et al. (2020b). All of these works assume
the availability of an offline process model for the purposes
of policy learning. In Hwangbo and Sin (2020), an action-
value method is presented for control of a downstream
separation in a biopharmaceutical process. Importantly,
focus within RL-orientated academic works is increasingly
directed towards guarantee of safe process operation and
policy learning. This is underpinned by recent works which
provide approaches for safe constraint satisfaction e.g.
Petsagkourakis et al. (2020a). For further context on the
application of RL in the process industries, we direct the
reader to a recent review provided by Shin et al. (2019).



1.2 Motivation

Despite the achievements and applications described pre-
viously, RL currently observes severe obstacles to reliable
implementation as a control solution within the process
industries. Mainly, concerns are directed to three areas:
satisfaction of operational constraints, process-model mis-
match (if offline learning via simulation is used), and
epistemic uncertainties in parameterisation of the control
policy. Further, conventional approaches to RL leverage
the use of artificial neural networks (ANNs) for the pur-
pose of policy or value function parameterisation. The use
of ANNs demands the generation of large datasets for
learning, and in the case of ’on-policy’ learning algorithms,
much of this data may only be used for one learning
update before being discarded. This provides practically
prohibitive cost in learning an optimal policy for a novel
process whereby existing historical data is unavailable.
Therefore, as previously alluded, initial policy learning is
conducted offline and demands simulation of the process
via an approximate process model. This reality represents
a dualism inherent to RL methods, which is often ignored
when demonstrated empirically in case study. Addition-
ally, ANN models are often prone to overfitting when the
amount of data available is significantly smaller than the
number of parameters, and control performance may be
highly sensitive to specific configurations and architectures
Zhang et al. (2018).
Gaussian processes (GPs) have been used for a number
of years as surrogate models (also known as meta-models)
for the control and optimisation of chemical processes, see
for example Bradford et al. (2020, 2018). A key advantage
of GPs, as statistical models, is that they are able to en-
code analytical uncertainty as a prediction consists of the
posterior probability distribution over possible function
values. This provides a mechanism for control to account
for process and policy (or value function) parameterisation
uncertainties - providing an inherently safer alternative
to vanilla use of ANN. Consequently, techniques such
as Bayesian optimisation have taken advantage of this
in order to find global solutions to otherwise expensive
optimisation problems Jones et al. (1998). As such, the in-
tegration of GPs with the decision-making framework un-
derpinning RL provides an attractive prospect in the scope
of sample efficient and safe policy learning. In the follow-
ing, a method is proposed, which combines GP-based RL
and Bayesian optimisation with the concept of constraint-
tightening and backoffs. The concept of constraint tight-
ening is translated from the domain of stochastic model
predictive control (sMPC) and enables the probabilistic
satisfaction of constraints Mehta and Ricardez-Sandoval
(2016); Bradford et al. (2020). It is also hypothesised
that the method could reduce dependence upon offline
simulation provided data from an existing control scheme
is available.

The structure of this paper is as follows: Section 2 first
introduces Gaussian processes and Q-learning, then the
proposed method that integrates these two methods is
outlined. Subsequently, the benefits of using GPs as Q-
functions are described and the case study is then intro-
duced applying the proposed methodology to the control of

a non-isothermal semi-batch reactor. Section 3 outlines the
results and discussion of the application of GP Q-learning
to the case study and Section 4 provides a subsequent
conclusion and directions of future work.

2. METHODOLOGY

2.1 Gaussian Processes

A Gaussian process is defined as a collection of random
variables, any finite number of which have a joint Gaussian
distribution Rasmussen and Williams (2005). Specified
by a mean function and a covariance function, Gaussian
processes are non-parametric and as a result, concepts
inherent in parametric modelling such as over and under-
fitting data are avoided. The mean function is commonly
set to a constant value of 0 as this specifies as limited
prior information regarding the underlying function. Sub-
sequently, a Gaussian process is defined as follows:

f(x) ∼ GP(0, k(·, ·)) (1)
where f is the resulting function approximation, and k(·, ·)
is the covariance function.
The covariance function is used to relate the correlation
between neighboring data in input-space, most commonly
through a distance metric such as a norm. Often used
due to its smooth, differentiable form is the squared
exponential kernel:

k(x,x∗) = σ2
f exp
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where x and x∗ are vectors of inputs, l and σf are hyper-
parameters that effect the length scale of functions that
are produced, σn defines the level of noise present in
the posterior distribution and δpg is the Kronecker-delta
function. If for example data was derived from noise-
free computational experiments, this parameter could be
manually selected as 0 thus specifying zero posterior
uncertainty when x = x∗ i.e. predicting the value of the
function at a known input. These hyper-parameters are
optimised by minimising the negative log-likelihood of the
Gaussian process along with respective data:
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where y is the set of observed function values, X is the
training data matrix, K is the gram-matrix produced by
covariance function k and the training data, and n is the
dataset size.
The posterior distribution after evaluating the Gaussian
process at novel input locations X∗ is given by the follow-
ing multivariate Gaussian distribution.
f∗|X∗, X, f ∼ N (µ,Σ) (4)
µ = K(X∗, X)K(X,X)−1f (5)
Σ = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)) (6)

where K(X∗, X) is the Gram matrix between the training,
and evaluation locations, with K(X,X∗) being its trans-
pose. For further details refer to Rasmussen and Williams
(2006).



2.2 Action-value Learning

Q-Learning is a reinforcement learning technique devel-
oped by Watkins Watkins (1989). This method takes ad-
vantage of a learned action-value function in order to
determine an optimal control policy Sutton and Barto
(2018). A Q-function is created that takes both states and
controls, and outputs an expected future reward. By opti-
mising over possible control actions at each time-step, the
future reward given the current state can be maximized.
Maintaining consistent notation for remaining sections,
the Q-function temporal difference update is performed
as follows:

Q(xt,ut) = Eπ

[ T−1∑
t′=t

Rt′+1|x = xt,u = ut

]
(7)

where Q is a function that describes the total expected
future reward given a state and an action. Rt+1 is the
reward given for taking the action ut at state xt and
T is the length of the finite control horizon. γ defines
how much future rewards are discounted and may or may
not be included depending on the length of the control
horizon, and α defines a learning rate to be used when
the Q function takes the form of a table (discrete states
and controls). Once the actual reward of the system has
been noted following enactment of the controls chosen, the
Q function is updated allowing for a better subsequent
determination of rewards give states.
For a discrete-time process with a set of discrete control
actions, a Q-function is created at each discrete time-
step. Note that for the initial creation of the Q-functions,
the state and control space is originally sampled using
an efficient space-filling regime (e.g. Latin Hypercube
Sampling (LHS)) in order to create a search space over
which the future reward can be optimised. For a process
with N discrete time steps, the Q-learning algorithm is as
follows:

Algorithm 1. N-step Q-learning

Initialisation: Sample the state-action space and con-
struct n Q-functions Qi for i = 1, ..., n, given iterations
and initial state x0.
while iterations not reached do

for n in N-steps do
Provide Qn with xn

uopt = argmaxu Qn(xn,u)
Take control action uopt and observe xn+1, Rn+1

end
Updates Q-functions:
for n in N-steps do

Qn(xn,uopt) = Rn +Qn+1

end
end
Output: n Q-functions that provide an optimal control
policy when optimised control actions are taken at each
step.

2.3 GP Q-Learning

Q-Learning and its many variants have found much success
in recent years through the use of deep neural networks

(DNNs) to approximate the Q-function. However with this
comes a number of challenges, namely the amount of data
required to properly train a DNN, address overfitting, as
well as the time consuming hyperparameter selection and
neural architecture searches that are vital to ensure the
success of this approach. The issue also becomes prevalent
when considering that the majority of RL case studies and
successes derive from applications with rapid evaluation of
states and actions, for example a computer playing itself
at chess or a video game, or even robotics. It is much more
time consuming to gain this vital data within the context
of a chemical process. For example chemical or biochemical
reactions may take hours or days to complete. Therefore,
for RL technologies to be effectively utilised within the
process industry, a more sample efficient approach must
be taken with regards to function approximation. Thus
motivates the use of Gaussian processes as an internal
model, enabling model-free RL techniques to be taken
advantage of.
By instead approximating the Q-function at each timestep
by a separate Gaussian process a number of advantages
can be derived.
Automatic exploration/exploitation.
Traditional reinforcement learning approaches to balanc-
ing the exploration of the search space and the exploitation
of existing known control actions can be heuristical such
as the ϵ−greedy approach of taking a random action with
a certain decreasing probability. As Gaussian processes
provide analytical uncertainty into a prediction, it natu-
rally follows that Bayesian optimisation techniques can be
taken advantage of. By optimising the mean in addition
to the standard deviation, areas of high uncertainty are
automatically explored. In the case of maximisation of
the Q-function with respect to control actions the Upper
Confidence Bound (UCB) is defined as:

QUCB
n (xn,u) = E [Qn(xn,u)] + βσ [Qn(xn,u)] (8)

where E[Qn(xn,u)] is the mean of the GP posterior
distribution, σ denotes the standard deviation of this
posterior, and β is a scaling factor. By optimising this
UCB Q-function at each timestep, automatic exploration
and exploitation is enabled allowing for optimal policies to
be found efficiently. This is also illustrated in Fig. 1 where
the underlying function is shown in red, an approximating
Gaussian process mean (black) and variance (grey) is
shown on the same axis. Below, the composite UCB
function is shown illustrating how the search space is
modified to encourage exploration to regions with high
variance.
More sample efficient.
As previously mentioned, it can take hours or days for
some chemical processes to reach completion. For an
existing process a historical dataset may be able to be
used, however for a novel process real world data will
initially be sparse. Therefore if model-free RL techniques
such as Q-learning are to be used effectively, they will need
to learn effectively from initially little data.
As Gaussian processes specify a smoothing model class
(i.e. predictions weighted by the training data outputs)
as opposed to a regression model whereby the model’s
prediction is calculated through the minimisation of an



Fig. 1. Example visualisation of the UCB Bayesian opti-
misation approach to optimising each Q-function.

error metric (as is the case with neural networks), they
are less prone to over or underfitting when compared to
ANNs.
On the contrary, too much data can cause Gaussian pro-
cesses to fail due to inefficient scaling of the inversion of the
covariance matrix, however in recent years considerable
effort has been made to enable Gaussian processes to
be efficient for larger datasets, whilst also maintaining
efficiency at low data numbers (Josiah Yan , Thang D.
Bui , Turner (2017)).
Probabilistic constraint violation (back-off).
By modelling the future constraint violation at each time-
step using a distinct Gaussian processes in a similar man-
ner to modelling the expected future reward (Q-function),
constraints can be handled with relative ease. The output
of this constraint function at each time-step is appended
as a penalty to the cost function, as is customary when
using evolutionary algorithms, although complete global
optimization can be used (Schweidtmann et al., 2020).
The augmented Q-function to be optimized at each time-
step is therefore a combination of the Q-function itself,
the variance as described previously, and the constraint
penalty with a backoff term:

max
u

E[Qn(xn,u)] + βσ[Qn(xn,u)]−

ω

i∑
i=1

max(E[GPi
con(xn,u)] + σ[GPi

con(xn,u)], 0)
(9)

Where GPi
con denotes the GP associated with the predic-

tion of constraint i and ω is the weight of this penalty.
As there is also an associated uncertainty with these
constraint violation predictions, a probabilistic back-off
term may be appended to the expected function value
proportional to the standard deviation of the posterior
predictive distribution.
In this way, the probability of a constraint violation can be
specified, ensuring safe exploration during the model-free
RL procedure.

2.4 Case Study

The case study used to evaluate the viability of Q-Learning
through Gaussian process function approximation is the
control of a semi-batch non-isothermal reactor with mul-
tiple reactions. Specifically, series reactions of the form:

2A k1,A−−−→ B k2,B−−−→ 3C (10)
The set of five process states x consists of [CA,CB,CC,T,V]
with the controlled variables u consisting of the heat
exchanger temperature Ta and inflow rate of A, F . The
dynamics of the reactor are defined as:

dCA
dt = −k1A · CA + (CA0 − CA) ·

F

V
(11)

dCB
dt = k1A · CA/2− k2B · CB − CB · F

V
(12)

dCC
dt = 3k2B · CB − CC · F

V
(13)

dV
dt = F (14)
dT
dt =

UA(Ta − T)− FA0CPA
(T − T0) + ...

[CACPA + CBCPB + CCCPC ]V +NH2SO4
CPH2SO4

[(∆HR1A)(−k1A · CA) + (∆HR2B)(−k2B · CB)]V

[CACPA + CBCPB + CCCPC ]V +NH2SO4
CPH2SO4

(15)

where both reaction rate constants are defined respectively
as:

k1A = A1 · exp
[
E1A ·

(
1

Tr1

− 1

T

)]
(16)

k2B = A2 · exp
[
E2B ·

(
1

Tr2

− 1

T

)]
(17)

Parameters that are neither states nor controls as pre-
viously defined in Equations 11 to 17, have fixed values
which can be found in Fogler (2006).
Scaled Gaussian noise is added to the dynamics of each
state to induce stochasticity within the case study, pro-
viding a more representational real world problem.
Dynamics are evaluated over the course of 4 hours using a
Runge-Kutte 4th order integration scheme, at which point
the final amount of product CC · V is evaluated. Control
actions are assumed to be constant inputs to the system
that can be changed once per 24 minutes, resulting in a
total of 10 control actions for each batch. Each input is
bounded, and the overall optimal control problem can be
defined as follows.

max
u

CC(tf ) · V (tf ) (18)
s.t. ẋ = f(x(t),u(t), t) (19)

x0 = [1, 0, 0, 290, 100] (20)
T (t) < 420 K (21)
V (t) < 800 L (22)
0 Lh−1 ≤ F (t) ≤ 270 Lh−1 (23)
298K ≤ Ta(t) ≤ 500K (24)

where x is the set of process states, u is the set of controlled
variables. Two additional constraints concern the overall



temperature of the reactor at any one time being limited
to 420 K, and the total volume of the reactor being limited
to 800 L.
The optimal control problem is solved through the creation
and subsequent optimisation of a separate Q-function
at each time-step. This Q-function encodes information
about the future reward given the current state and control
action. By optimising over the control actions, the future
reward (in this case production of C) is maximised. Once a
control action is chosen, the dynamics are integrated over
that time interval and the next Q-function is provided the
resulting state and subsequently optimised with respect
to its control action. Once a complete trajectory has been
undertaken, all Q-functions are updated with the previous
state at the specific time-step, control action at each time-
step, and resulting reward (immediate and discounted
future).
Constraints are handled in a similar fashion, with a sepa-
rate Gaussian process at each time-step predicting possible
future constraint violation given the current state and a
possible control action. However the ’reward’ becomes a
penalty proportional to the violation of each constraint.
By appending this penalty to the cost function of the
optimisation problem, control actions can be chosen that
minimise the probability of violating a constraint both
immediately and in the future.
Gaussian process based Q-functions were implemented in
Python 3.7.4 using the GPy library (GPy (since 2012))
and their optimisation was performed using a BFGS (Liu
and Nocedal (1989)) solver within the SciPy scientific
computing library.

3. RESULTS AND DISCUSSION

The semi-batch non-isothermal reactor case study was first
sampled 20 times using control actions generated via a
Latin hypercube sample in order to gain a representative,
distributed, set of initial inputs. In an industrial setting
historical process data may be used to initialise the GPs.
These control actions were used to gain initial values over
the constraint and objective function (future reward) space
which were subsequently used along with the generated
inputs to construct the initial GPs. Following this, the
model-free Q-learning algorithm was applied and each GP
was updated with new values after each iteration. The
algorithm was left to run for 100 iterations, a real-life time
of around 16 days assuming a single reactor in operation
and no maintenance or cleaning between batches. Com-
putationally the complete routine took 35 minutes on a
Macbook Pro with a 1.4 GHz i5 8th generation processor.
The average results over the final 50 iterations are shown
below with the grey area representing one standard de-
viation. The first 5 axis show the 5 process states, dotted
red-lines indicate the two process constraints shown above,
and the final 3 axis show the two respective control actions,
and total production of the product C in kmol.

Fig. 2. Average states, control actions and production of
the final 50 iterations of Q-learning, each iteration
consisting of a distinct 4 hour process trajectory. Grey
bars represent one standard deviation.

In Fig. 2, it can be seen that effective control policies for
both F and Ta were identified, with the F control policy
slightly more constrained than Ta. This may be as a result
of the more rapid coupling between the temperature con-
trol and the temperature of the reactor. When considering
the controller has to adjust to account for this temperature
constraint across the majority of the process trajectory,
a broader range of control actions are sought in order to
quickly satisfy this constraint. Importantly the two process
constraints on volume and temperature are both largely
respected throughout the trajectories shown within one
standard deviation. Near the end of the process trajectory
the average temperature of the reactor rises slightly above
the value of the constraint. However, it is anticipated as
is the case with reinforcement learning in general that
more considered hyper-parameter tuning would negate
this small infraction. The effect of probabilistic back-offs,
facilitated by the use of GPs is also made clear as both
constraints are respected within one standard-deviation.
Subsequently, the trajectories generated by the model-free
GP RL algorithm are shown to be safe, a key aspect of any
algorithm that is to be used within the control of industrial
processes.

4. CONCLUSIONS AND FUTURE WORK

To conclude, in this paper model-free action-value rein-
forcement learning was introduced and outlined in the
context of processes with discrete control-actions in time.
Gaussian processes were then introduced as alternatives
to traditional neural networks for the creation of action-



value functions. With benefits namely including analytical
uncertainty, utilised in Bayesian optimisation to balance
the exploration-exploitation trade-off, as well as increased
efficiency for low volumes of data. Gaussian processes also
have the advantage in not over or underfitting providing an
accurate action-value function for all magnitudes of data
available. Process constraints were represented again using
Gaussian processes, with the analytical uncertainty pro-
viding a ’back-off’ to the constraint penalty term ensuring
safe-exploration.
A non-isothermal semi-batch reactor was used as a case-
study and a control policy generated using 100 iterations
of the model-free GP RL algorithm described. Constraints
were seen to be respected within one standard deviation,
a value specified as the backoff, and the production of
chemical product was maximised.
Future work may wish to consider the direct comparison
between Gaussian processes and a neural-network based
approach. Improvements could also be investigated re-
garding the considered removal of past datapoints that
contribute to older, sub-optimal states and actions as
well as sensitivity to initialisation of GPs. Analogous to
replay-memory in neural-network based RL, a considered
approach into which datapoints are provided to each GP
may result in further improved optimal policies. It may
also be possible to parallelise the training of the separate
GPs allowing for faster optimisation times. However, when
considering the time to complete a single process trajectory
in real-time compared to GP training and optimisation,
further development in reducing computational time may
not be required and attention should be placed elsewhere
(e.g. identifying optimal policies).
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