
     

 Energy and Carbon-Constrained Production Planning with  

Parametric Uncertainties 

Nitin Dutt Chaturvedi*, Piyush Kumar Kumawat, Aditya Kumar Keshari,  

 


*Department of Chemical and Biochemical Engineering, 

 Indian Institute of Technology Patna, Bihta, 147004, Patna, Bihar India  

( e-mail: nitind@iitp.ac.in). 

Abstract: The intent of this paper is to develop a mathematical model considering uncertainties in 

aggregate production planning problems. It is being a great advance to consider uncertainty in production 

planning problems compared to models that do not account for uncertainty which results in poor planning 

decisions. The paper deals with the planning problems with multiple process routes to satisfy single 

product demand. Robust optimization is used to target parametric uncertainty to immune the model 

against it. The objective of the problem is to minimize the overall production cost, capping the total 

carbon emission and energy consumption. A detailed methodology is presented to develop a robust 

optimization counterpart handling parametric uncertainties. The model has the ability to control the 

degree of conservatism for every constraint using budget parameter and guarantees feasibility for the 

robust optimization problem. The applicability of the model is explained using a case study. The impact 

of different budget parameters on the objective value is studied, it will assist the planner to prepare the 

production plan with the known uncertainty level. 
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1. INTRODUCTION 

Aggregate production planning (APP) models are one of the 

most salient models in the planning of industries. Developing 

a production planning model while focusing on constrained 

carbon emission and energy saving can provide an efficient 

approach for sustainable development [Sinha and Chaturvedi, 

2019]. However, some key input data of production and 

energy planning models, such as cost, energy consumption 

and demand specifications can be uncertain [Mirakyan and 

De-Guio, 2015]. In such a scenario traditional plan may 

result in inferior solutions which would significantly affect 

planning performance [Sagawa and Nagano, 2021].  

To address the problem of uncertainty, literature formulations 

can be classified into different categories; scenario-based 

stochastic programming, data-driven machine learning 

methodologies and robust counterpart optimization. Out of 

them, the first two methods require historical knowledge of 

data in order to handle uncertainties, which may not be 

available or difficult to acquire. As an alternative approach, 

robust optimization avoids such shortcomings and target 

uncertainties with a predefined bounded uncertainty set.   

Mula et al. [2006] presented a review of different models for 

production planning under uncertainty. It comprises 

conceptual, analytical, intelligence and simulation-based 

mathematical models used for APP. Further, robust 

optimization methodologies have been developed and widely 

applied in APP for multisite, supply chain networks etc. 

Modarres and Izadpanahi [2016] proposed a robust 

formulation for APP focusing on energy saving. However, 

very few works of literature proposed an APP using different 

process routes. A deterministic dual objective model to 

minimize carbon emission and energy consumption from 

multiple process routes is graphically solved by Sinha and 

Chaturvedi [2018]. To handle parametric uncertainties 

associated with each process route, a robust counterpart 

formulation is proposed in this paper. 

The aim of the robust formulation is to make the 

mathematical model immune against the parametric 

uncertainties in the inputs. Soyster [1973] advocated 

uncertainties using a linear optimization approach to find a 

solution that fits with all data in a given uncertainty range. 

The result of this model happens to be over-conservative. 

Afterwards, in convex programming with ellipsoidal 

uncertainty sets, Ben-Tal and Nemirovski [1999] developed a 

rigorous optimization approach to solve parameter 

uncertainty. They developed robust equivalents for linear 

optimization and quadratically constrained programming. 

Later, Bertsimas and Sim [2004] claimed the worst-case 

value for all of the unknown parameters at the same time is 

improbable. To handle parametric uncertainties, they 

introduced a linear formulation having a mechanism to 

control the conservative level and optimality. 

In this paper, a robust formulation is presented for an APP 

problem having multiple process routes, each process route 

has its respective emission factor (EF), specific energy 

consumption (SEC) and production cost (per ton). These 



     

parameters happen to be uncertain in a bounded interval. To 

immune the model against these uncertainties a robust 

counterpart is proposed. This model results to be linear with 

energy and emission limits along with an objective to 

minimize the production cost. The applicability of the 

proposed approach is illustrated by applying it to a case study 

based on the steel industry having multiple process routes. 

2. PROBLEM DEFINITION AND MATHEMATICAL 

FORMULATION 

Given Zi process routes to produce a finished product from 

raw material. With the increasing demand of the future, Pi i.e. 

the variable amount of production level from the ith process 

route needs to be enhanced.  

The APP aims to plan production with a restriction on total 

carbon emission and total energy consumption. Here each 

process route has an emission factor (𝐸𝐹𝑖) which is uncertain 

and can vary in the region 𝐸𝐹𝑖 ∈ [𝐸𝐹𝑖
̅̅ ̅̅ − 𝐸𝐹𝑖̂, 𝐸𝐹𝑖

̅̅ ̅̅ + 𝐸𝐹𝑖̂]. 
Similarly, each process route has a specific energy 

consumption (𝑆𝐸𝐶𝑖) which is also uncertain and can vary in 

the region 𝑆𝐸𝐶𝑖 ∈ [𝑆𝐸𝐶𝑖
̅̅ ̅̅ ̅̅ − 𝑆𝐸𝐶𝑖̂, 𝑆𝐸𝐶𝑖

̅̅ ̅̅ ̅̅ + 𝑆𝐸𝐶𝑖̂]. The 

maximum level of production from ith process route is 

specified fo be 𝑃𝑖
𝑚𝑎𝑥. Also production cost per unit 

production (𝐶𝑖) from each process route is also specified to 

be within the region process route 𝐶𝑖 ∈ [𝐶𝑖̅ − 𝐶𝑖̂, 𝐶𝑖̅ + 𝐶𝑖̂]. 

The objective is to minimize the production cost satisfying 

the limits of carbon emission and energy consumption. A 

schematic of this problem is shown in Fig. 1. 

 

Fig 1. Schematic representation of the defined problem 

2.1 Deterministic Mathematical Formulation  

This section gives the mathematical formulation taking the 

nominal values. The mathematical model comprises the 

following sets, variables, parameters, and constraints. 

Sets 

𝐼 =  {𝑖|𝑖 = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑜𝑢𝑡𝑒𝑠} 

Parameters 

𝐸𝐹𝑖 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑜𝑢𝑡𝑒 ′𝑖′ 

𝑆𝐸𝐶𝑖 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 
 𝑟𝑜𝑢𝑡𝑒 ′𝑖′ 

𝐶𝑖 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠  
𝑟𝑜𝑢𝑡𝑒 ′𝑖′ 

𝑃𝑖
𝑚𝑎𝑥 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠  

𝑟𝑜𝑢𝑡𝑒 ′𝑖′ 

𝑃𝑑 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑚𝑎𝑛𝑑 

𝐶𝐸𝐿 𝑐𝑎𝑟𝑏𝑜𝑛 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 

𝐸𝐶𝐿 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 

Variables 

𝑃𝑖 =  Amount of production from process route ‘𝑖’ 

Constraints 

The most important constraint is to meet the production 

demand; the constraint is expressed in (1). Each process route 

𝑃𝑖  has the maximum production limit defined by (2). 

∑ 𝑃𝑖 = 𝑃𝑑

𝑍𝑠

𝑖=1

 (1) 

𝑃𝑖 ≤ 𝑃𝑖
𝑚𝑎𝑥  (2) 

The restriction on total carbon emission (CEL) and total 

energy consumption (ECL) is given by (2) and (3). 

∑ 𝑃𝑖 × 𝐸𝐹𝑖 ≤ 𝐶𝐸𝑙

𝑍𝑠

𝑖=1

 (3) 

∑ 𝑃𝑖 × 𝑆𝐸𝐶𝑖 ≤ 𝐸𝐶𝑙

𝑍𝑠

𝑖=1

 (4) 

The objective is to minimize the total production cost i.e. 

given in (4): 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑃𝑖 × 𝐶𝑖

𝑍𝑠

𝑖=1

 (5) 

2.2 Robust Mathematical Formulation including uncertainty  

This section presents the robust mathematical formulation 

incorporating the given uncertainties. The constraints of the 

deterministic mathematical formulation are modified using 

the concept proposed by Bertsimas and Sim [2004]. The 

Objective: 

Minimization of Production Cost 

Decision Variable 

Production from each process route 

Given: 

Process routes data 
- SEC Data 
- EF Data 
- Cost data 

Constraints: 

Demand Satisfaction 

Production limits 

Total Energy Consumption limit 

Net Carbon Emission limit 



     

mathematical model comprises the following additional 

variables and parameters followed by the modified 

constraints. 

 

Additional Parameters 

𝐸𝐹𝑖
̅̅ ̅̅  

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠  
𝑟𝑜𝑢𝑡𝑒 ′𝑖′ 

𝐸𝐹𝑖̂ 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 𝑖𝑛 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

 𝑟𝑜𝑢𝑡𝑒 ′𝑖′ 

𝑆𝐸𝐶𝑖
̅̅ ̅̅ ̅̅  𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑜𝑢𝑡𝑒 ′𝑖′ 

𝑆𝐸𝐶𝑖̂ 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛  𝑜𝑓 
𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑜𝑢𝑡𝑒 𝑖 

𝐶𝑖̅ 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 
 𝑝𝑟𝑜𝑑𝑢𝑐𝑡  𝑓𝑟𝑜𝑚 𝑟𝑜𝑢𝑡𝑒 𝑃𝑖 

𝐶𝑖̂ 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 𝑖𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡  𝑝𝑒𝑟 𝑢𝑛𝑖𝑡  
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑟𝑜𝑢𝑡𝑒 𝑃𝑖  

Г𝐸  𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑖𝑛  𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛    

Г𝑆𝐸𝐶  𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

Г𝐶  𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑖𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡   

Additional variables 

𝑧𝐸 , , 𝑞𝑖
𝐸 , 

𝑧𝑆𝐸𝐶 , 𝑞𝑖
𝑆𝐸𝐶 , 

𝑧𝐶 , 𝑞𝑖
𝐶 

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑢𝑥𝑖𝑙𝑎𝑟𝑟𝑙𝑦 𝑣𝑎𝑟𝑖𝑏𝑙𝑒𝑠 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑑𝑢𝑒  
𝑡𝑜 𝑑𝑢𝑎𝑙𝑖𝑡𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 

Modified constraints 

Equation (3) that restricts the carbon emission limit is 

modified as follows (6 and 7).  

∑ 𝑃𝑖𝐸𝐹𝑖
̅̅ ̅̅

𝑧𝑠

𝑖=1

+ Г𝐸𝑧𝐸 + ∑ 𝑞𝑖
𝐸

𝑍𝑠

𝑖

 ≤ 𝐶𝐸𝐿,     ∀ 𝑖 (6) 

𝑧𝐸 + 𝑞𝑖
𝐸 ≥ 𝑃𝑖 × 𝐸𝐹𝑖̂,                                ∀ 𝑖   (7) 

Similarly, Equation (4) that limits energy consumption is 

modified as (8) and (9). 

∑ 𝑃𝑖𝑆𝐸𝐶𝑖
̅̅ ̅̅ ̅̅

𝑧𝑠

𝑖=1

+ Г𝑆𝐸𝐶𝑧𝑆𝐸𝐶 + ∑ 𝑞𝑖
𝑆𝐸𝐶

𝑍𝑠

𝑖

 ≤ 𝐸𝐶𝐿,     ∀ 𝑖  (8) 

𝑧𝑆𝐸𝐶 + 𝑞𝑖
𝑆𝐸𝐶 ≥ 𝑃𝑖 × 𝑆𝐸𝐶𝑖̂,    ∀ 𝑖 (9) 

Further, the objective which aims to minimize (refer to (5)) 

the production cost (PC) is modified as (10) and (11). 

∑ 𝑃𝑖𝐶𝑖

𝑧𝑠

𝑖=1

+ Г𝐶𝑧𝐶 + ∑ 𝑞𝑖
𝐶

𝑍𝑠

𝑖

 ≤ 𝑃𝐶     ∀ 𝑖 (10) 

𝑧𝐶 + 𝑞𝑖
𝐶 ≥ 𝑃𝑖 × 𝐶𝑖̂,    ∀ 𝑖   (11) 

The overall formulation can be solved as a linear 

programming formulation. Probability violation methodology 

with respect to uncertainty realization can be adapted from 

Bertsimas and Sim (2004). 

 

Fig. 2. Flowchart for the methodology of APP with 

parametric uncertainty 

The flow chart in Fig. 2 shows an APP methodology with 

uncertain parameters for optimal reliability of production 

cost. First, the proposed mathematical model is solved using 

given data by assigning the budget parameter for each 

constraint; production cost (ГC), carbon emission(ГE), and 

energy consumption (ГSEC). A feasible model will result in 

attaining minimum cost with a production plan for the 

assigned level of uncertainty. If the true values of the 

parameter violate the capped limit of constraints, then the 

model results to be infeasible; however, this could be 

resolved with different cases, discussed later in this section. 

Next, calculate the upper bound probability violation for the 

assigned budget parameter. If the values are satisfactory for 
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the decision-maker (DM) then the procedure may end by 

obtaining a production plan, which can guarantee the desired 

reliability constraints. If the DM is not satisfied, then the 

whole procedure should be repeated with the new value of 

the budget parameter until the DM can make an appropriate 

trade-off between the surplus production cost and calculated 

probability violation value. 

With an objective to minimize production cost, there could be 

a possibility of the optimization model results being 

infeasible for a specific uncertainty level. The reason may be 

that the constrained limit for total carbon emission and 

energy consumption might be violating and not be satisfied 

with the production limit of the process routes. The issue can 

be resolved with the following cases. 

1. By modifying the capped limits (CEL) of total carbon 

emission and total energy consumption (ECL), keeping 

the production limit constant (𝑃𝑖
𝑚𝑎𝑥). 

2. By modifying the limit of the production amount 𝑃𝑖
𝑚𝑎𝑥  

from the process routes and keeping the capped limits 

constant. 

For the first case, the capped limits could be extended until 

the model outputs feasible for its respective known budget 

parameter. For the second case, the production limit could be 

modified as per the possibility and choice of DM. It could be 

modified by increasing the limit of the route having the 

lowest cost. Other methodologies can also be implemented 

like the graphical approach presented by Al-Mayyahi et al 

(2013) for target resource planning. 

3. ILLUSTRATIVE EXAMPLE 

The proposed methodology is applied to a case study based 

on the Indian steel industry. As per the report by the Centre 

of Science and Technology [2009], India is the third-largest 

steel producer in the world, it is also estimated that steel 

production in 2030-31 will be around 302 million MT 

(mMT). India’s steel production is carried out mainly through 

four process routes.  These are Scrap-Electric Arc Furnace 

(Scrap-EAF), Gas – based Direct Reduced Iron-Electric Arc 

Furnace (Gas-based DRI-EAF), Blast Furnace/Basic Oxygen 

Furnace (BF/BOF) and Coal-based DRI-EAF.  

Table 1: Description of process routes for the example (Indian steel industry 2030-31)  

Process routes 
EF 

(MT CO2/t product) 

SEC 

(GJ/t product) 

Production Cost 

($k/t product) 

Maximum projected production in 

2030-31 (mMT) 

Scrap-EAF 1.1±0.11 20±4 50±3 32 

Gas-based DRI-EAF 1.5±0.35 21.9±2 60±3 19 

BF/BOF 2.1±0.4 29±4 30±2 95 

Coal-based DRI-EAF 3.8±0.5 23.4±3 25±2 180 

Each process routes have its SEC, EF adapted from Sinha 

and Chaturvedi [2019]. An arbitrary cost is also assumed 

required to produce per ton of product from each process 

route. With the unpredictable scenarios and behaviour of 

process routes, these parameters can vary from their nominal 

value in a bounded interval. The amount of product (steel) 

required from each process route is presented in Table 1 with 

their respective uncertain process parameters. The aggregate 

production required from all the process routes is 302 mMT 

as total demand. 

The objective of the problem is to optimize production cost 

and to estimate it considering parametric uncertainties while 

satisfying the demand. Here the total emission and energy 

consumption is capped with 1000 MT CO2 and 8300 GJ 

respectively.  First, the deterministic problem is solved and 

the objective value is calculated as $8700000. However, the 

parameters i.e. SEC, EF and C (cost per ton product) may 

change but are considered to vary in their respective bounded 

region. With the objective to minimize the production cost 

under uncertainty, the worst-case scenario corresponds to the 

maximum value of all the parameters. It should also be noted 

that aggregate forecasts are more accurate than individual 

ones suggest that the “true values” taken by Г will belong to a 

much narrower range. For the illustrated example four 

process routes are available, therefore the possible range of 

each budget parameter will be [0,4]. Here, the DM should 

choose the budget parameter considering the perturbations in 

process route parameters.  

The model was solved using the GAMS 24.8.2, XPRESS 

solver on the computer (Intel(R) Core(TM) i5 (3 GHz), 8 GB 

RAM) and the results were obtained in a fraction of seconds. 

 

Uncertainty in EF: In this case, bounded and symmetric 

uncertainty in the emission factor of each process route is 

assumed. The nominal EF along with the variability scale is 

Fig. 3. Impact on the objective value with variation in the 

budget parameter of cost (Г𝐶
), carbon emission(Г𝐸

), and 

energy consumption (Г𝑆𝐸𝐶
). 



     

presented in Table 1. In the previous section, it was stated 

that 𝐸𝐹𝑖 (emission factor of the ith process route) can vary in 

the region 𝐸𝐹𝑖 ∈ [𝐸𝐹𝑖
̅̅ ̅̅ − 𝐸𝐹𝑖̂, 𝐸𝐹𝑖

̅̅ ̅̅ + 𝐸𝐹𝑖̂]. The parameters are 

considered to be varying to the right-hand side spread 

(leading to worst-case) from the nominal value of the 

bounded interval.  

The level of uncertainty will be controlled by Г𝐸  and its 

corresponding effect to the objective value (production cost) 

can be observed in Fig. 3. It is also observed that the  

production cost is not affected until Г𝐸 = 0.8, showing that 

this level of uncertainty will not affect the production plan. 

Beyond this level, the model looks for other possible 

production plans to minimize objective value satisfying the 

emission and energy constraints. A steep rise is observed in 

production cost between the level of uncertainty (0.8, 2), 

which then steadily increases. These drastic and 

unpredictable changes in objective value are evident because 

the model looks for suitable production plans to carry out 

production within defined limits on the expense of production 

cost. Table 2 presents the effect of the upper bound of 

probability violation with varying budget parameter. It is 

observed that with an increase in budget parameter, the 

objective value increases. The surplus amount is also known 

as the price of robustness. This provides a choice to the 

decision-maker for a trade-off between the price of 

robustness and the upper bound of the probability violation.  

Uncertainty in SEC: Similarly, in this case, true values of 

SEC appears in the bounded and symmetric region [𝑆𝐸𝐶𝑖
̅̅ ̅̅ ̅̅ −

𝑆𝐸𝐶𝑖̂, 𝑆𝐸𝐶𝑖
̅̅ ̅̅ ̅̅ + 𝑆𝐸𝐶𝑖̂]. Table 1 presents the nominal SEC of 

each process route along with the scale of variability. The 

degree of uncertainty is regulated by the Г𝑆𝐸𝐶  and can be seen 

in Fig. 3 to signify its resulting influence on the objective 

value. Similar to the previous case, till Г𝑆𝐸𝐶 = 1.6, no impact 

on the production plan and objective value been observed. It 

is also noticed that the feasible production plan can only be 

achieved up to Г𝑆𝐸𝐶 = 3.6, with an objective of $ 9375750. 

Further than this degree, the limit of overall capping of 

energy consumption could be exceeded, leading to 

infeasibility. The consequence of the upper bound of 

probability violation with variance is presented in Table 2.  

 

Fig. 4. Impact of multiple uncertainties on objective value  (a) production cost/ton and EF, (b) production cost/ton and SEC

Uncertainty in production cost: In the same manner, the 

cost (𝐶𝑖) varies in the interval [𝐶𝑖̅ − 𝐶𝑖̂, 𝐶𝑖̅ + 𝐶𝑖̂]. The 

realization of objective value concerning the budget 

parameter is observed in Fig. 3. A gradual increase is been 

observed in the production cost with an increasing level of 

uncertainty. It will result in feasible solutions for any budget 

parameter lies between [0,4]. For the worst-case i.e. Г𝐶 = 4, 

the resultant objective value will be $10246710, with a 

probability of constraint violation to be 0.0625. However, the 

objective value results to be constant beyond Г𝐶 = 3, 

showing that only 75% of uncertain parameters (cost) 

influence the objective value. 

A detailed study considering two uncertainties at a time is 

explained using Fig. 4. With an increase in the budget 

parameter (Г𝐶), the curve shifts upwards considering 

uncertainties in production cost. Fig. 4(a) demonstrates the 

effect on objective value due to uncertainty in production 

cost/ton and EF, whereas, Fig. 4(b) accounts for uncertainty 

in production cost/ton and SEC. In both figures, the curve 

shift with a huge margin when Г𝐶  is modified from 0 to 2, on 

the other hand, a comparatively smaller shift is noticed from 

Г𝐶  = 2 to 4. This is due to the uncertainty level in cost and the 

latter shift has a lower impact on objective value because it 

results to be constant beyond Г𝐶 = 3. 

Table 2. Solution data of example 

Emission Factor 

Budget of Uncertainty 0 2 4 

Objective Value ($k) 8700 9150 9235.28 

Probability of  

constraint violation 
0.71 0.295 0.0625 

Specific Energy Consumption 

Budget of Uncertainty 0 2 4 

Objective Value ($k) 8700 8967.56 Infeasible 

Probability Constraint 

Violation 
0.71 0.295  



     

Production Cost 

Budget of Uncertainty 0 2 4 

Objective Value ($k) 8700 9250 10246.71 

Probability Constraint 

Violation 
0.71 0.295 0.0625 

A production plan considering all uncertainties is presented 

in Table 3. With their respective value of  Г𝐶 , Г𝐸 , Г𝑆𝐸𝐶  the 

presented plan should be followed to satisfy the demand with 

the capped limits of energy consumption and carbon 

emission. For the mentioned level of uncertainty, and to 

perform production within the capped limits, a surplus 

approximate amount of $1076080 is required to immune the 

model against uncertainty.  

Table 3. Production plan with uncertainty 

Г𝐶 , Г𝐸 , Г𝑆𝐸𝐶  2.5, 2, 2 

Production Cost $ 9776080 

Production Plan (mMT/process route) 

P1 32 

Scrap-EAF 13.3 

Gas-based DRI-EAF 89.7 

BF/BOF 167 

Total Demand 302 mMT 

The outcomes of the proposed work will assist DM in the 

following ways: 

 Obtaining a production schedule that should be followed 

adhering to restricted standards. 

 Estimating the production cost in uncertain scenarios. 

 Provides flexibility to the model and the ability to modify it 

based on uncertainty level. 

4. CONCLUSION 

With an increase in concern over carbon emission, energy 

consumption and production cost; constrained planning with 

uncertainty is important. In this study, a robust counterpart 

programming model is developed to integrate uncertainties in 

parameters related to the APP with multiple process routes.  

Total carbon emission and total energy consumption required 

to satisfy the demand is capped and the optimization problem 

is solved to minimize production cost. This formulation do 

not increase the problem size significantly and maintains 

linearity, It also provides control over the feasibility and 

optimality for the robust optimization problem. The proposed 

methodology is explained with a case study of steel 

production in India. In the example for a set of prescribed 

uncertainty levels, results depict that approximately an 

additional 12.3% capital would be required to satisfy demand 

under the constrained scenario. A production plan is also 

presented with an upper bound of probability violation for 

each constraint. The planning problem can also be 

implemented by constraining cost objective and optimizing 

the model for carbon emission and energy consumption. In 

future work, similar planning problems would be linked with 

scheduling for sustainable production. 
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