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Abstract: This study presents a framework to perform simultaneous planning, scheduling, and control 

(iPSC) under preventive maintenance (PM) for multi-product continuous manufacturing units. PM is an 

essential part of the chemical industry as they provide robustness to the operation and minimize potential 

plant shutdowns. Flexible planning periods are also investigated in this work since they can improve 

process economics. A case study featuring a multi-product CSTR is presented to illustrate the benefits of 

the proposed framework. The results show that flexible planning periods can lead to considerable economic 

improvement compared to fixed planning periods. Also, an appropriate PM program combined with 

flexible planning periods provides the opportunity to optimize the maintenance time instead of fixing those 

times a priori using process heuristics. 
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1. INTRODUCTION 

Enterprise-wide optimization (EWO) plays a vital role in the 

current competitive industry, providing a powerful tool to 

enable profitable and sustainable operations during 

workflows. Key aspects considered in EWO are planning, 

scheduling, and control (Grossmann, 2012). Often, problems 

involving planning, scheduling, and process control are 

considered hierarchically and solved independently. While 

easy to implement, hierarchical decision-making tools 

between these layers have significant limitations, such as 

process infeasibility and performance losses.  

To improve the flexibility and performance of the hierarchical 

framework, integration strategies including integrated 

planning and scheduling (iPS), integrated scheduling and 

control (iSC), and integrated design and control (iDC) has 

been proposed (Rafiei and Ricardez-Sandoval, 2020). The 

economic benefits pointed out by these strategies motivate the 

development of more comprehensive decision-making 

strategies involving more layers in the manufacturing process. 

To this end, frameworks addressing the integration of 

planning, scheduling, and control (iPSC) have been reported. 

(Charitopoulos, Dua and Papageorgiou, 2017) proposed a 

decomposition method to solve a monolithic iPSC model. 

(Dias and Ierapetritou, 2020) proposed data-driven 

methodologies and surrogate models to solve iPSC problems. 

A closed-loop iPSC framework that enables online solutions 

under disturbances has also been reported (Charitopoulos, 

Papageorgiou and Dua, 2019). Those studies considered a 

fixed planning period in their formulations, i.e. the planning 

horizon is divided into equal-length planning periods. Also, 

the length of each planning period is a fixed parameter in their 

formulations, which could limit the possibility of finding more 

economically attractive solutions.   

In a multi-layer integrated system, system reliability is critical. 

To keep the operation running at the target level and achieve 

the expected profits，maintenance is needed. Maintenance 

plays an essential role to ensure product availability, 

reliability, and product quality. Often, maintenance in a 

chemical process can be divided into corrective maintenance 

(CM) and preventive maintenance (PM). CM happens after a 

failure occurs and aims to restore the system to an operational 

state. PM is performed before the units in the system 

experience a breakdown, i.e. PM aims to reduce machine 

degradation and the risk of failure (Shafiee and Chukova, 

2013). Studies have previously considered production and 

maintenance schemes. The integration of PM and production 

scheduling for a batch unit in a single machine has been 

reported by (Cassady, C. R., & Kutanoglu, 2005). Recently, a 

study focused on a joint model involving production, quality 

control and PM showed that an integrated approach offers 

better economic performance than CM (Cheng and Li, 2020). 

While previous studies brought significant advances to 

consider the integration of production and maintenance; those 

works have not yet considered PM in the context of iPSC. 

This study presents a novel iPSC framework that explicitly 

accounts for PM. The iPSC model is formulated as a mixed-

integer nonlinear programming (MINLP) problem. Planning 

periods in this model are flexible, i.e. the planning horizon is 

not defined a priori as it is done in current iPSC formulations; 

thus, the solutions obtained by the present framework are 

expected to improve the process economics. To our 

knowledge, this is the first study that explores PM and flexible 

planning periods in a monolithic iPSC framework.  

2. MONOLITHIC MODEL 

This section presents the mathematical framework for the 

integration of planning, scheduling, and optimal control under 

PM and with flexible planning periods. (Charitopoulos, Dua 

and Papageorgiou, 2017) presented a monolithic model for 

iPSC. That model assumes that the machine continuously 

operates without providing a time slot to perform PM, which 

can reduce the risk of a machine breakdown during operation. 

Also, planning periods are defined as a priori, which may limit 



 

 

     

 

the model flexibility. In the present model, PM combined with 

flexible planning periods obtained from optimization are 

considered. As shown in Fig. 1, a flexible planning period (s) 

consists of a flexible manufacturing period (MP) and PM. MP 

consists of the start-up time, production time, transition time 

and shut-down time needed to provide PM to a machine. Once 

a PM has been completed, it represents the end of a planning 

period. Both MP and PM in each planning period are obtained 

from optimization. Since we consider the planning periods 

optimization variables, the present model selects the optimal 

time slot to perform each PM. The problem statement and 

assumptions considered in this model are as follows: 

Given: 

• A single-stage, multi-product continuous chemical process. 

• A production planning horizon (H). 

• Bounds of the MP in each planning period (s). 

• Bounds of the production time to a product for each s. 

• Demands for each product at the end of the planning horizon, 

and their corresponding selling prices. 

• Dynamic model describing the transient operation of the unit. 

• Raw material, operating, backorder and inventory costs. 

• The start-up and shut-down time of the unit at the beginning 

and the end of each planning period. 

Determine: 

• Optimal length of each planning period (s). 

• Optimal production sequences. 

• Production time and cost for each product in each period (s). 

• Optimal PM time in each planning period (s). 

• Inventory and backorder level for each product at the end of 

the planning horizon. 

• Optimal dynamic trajectories to transition between products. 

The present model assumes the following: i) The filling time 

and shut-down time of the unit are fixed. ii) Each product can 

only be assigned once in a planning period. iii) Each PM 

assumes that the machine will return to the status “as good as 

new” after each PM (i.e., aging is not considered). iv) All the 

products lower than or equal to product demands are sold right 

after the planning horizon. 

As shown in Fig. 1, the planning horizon is divided into S 

periods, which are optimization variables; hence, each 

planning period (s) may be of different lengths. These planning 

periods are modeled as discrete-time points. The detailed 

schedule of N products within each period (s) is presented as a 

continuous process and the dynamic trajectories from product 

i to product j can be found from optimization; x(t) denotes the 

state variables of the system. MP consists of a preset time 

range defined by a lower bound (mtlow) and an upper bound 

(mtup). The production sequence of each product is 

determined at the scheduling level. At the end of each MP, the 

machine is emptied (turned off) so that PM can be performed. 

The length of each PM is related to the duration of the MP. 

 
Fig. 1 Structure of the PSC model under PM constraints with 

flexible planning periods. 

As shown in Fig. 1, PM is the last step considered in a planning 

period. Once PM is completed, the machine needs a reset to a 

specific level of operation, which is the start-up process of the 

next planning period. Fig. 1 also shows the sequence at the 

dynamic optimization level: i) start-up, ii) production time and 

dynamic transitions among the different products 

manufactured during the period, iii) shut down, and iv) PM.  

2.1 Flexible planning period and Preventive Maintenance 

As mentioned above, the length of a planning period s (𝑃𝑃𝑠) 

consists of a flexible length of MP (𝑚𝑝𝑡𝑠) and PM (𝑚𝑡𝑠). 

𝑃𝑃𝑠 = 𝑚𝑝𝑡𝑠 + 𝑚𝑡𝑠 (1)                                  

where 𝑚𝑝𝑡𝑠 is defined as follows:  

𝑚𝑝𝑡𝑠 =  𝑀𝑠𝑠 + ∑ 𝑇𝑖𝑠𝑖 + ∑ ∑ 𝑇𝑖𝑗𝑠
𝑇𝑟

𝑗𝑖 +𝑀𝑒𝑠 (2)                     

where 𝑇𝑖𝑗𝑠
𝑇𝑟  represents the transition time from product i to 

product j during planning period s (see section 2.3); 𝑇𝑖𝑠 is the 

production time of product i in period s; Mes and Mss are the 

shut-down and start-up times during period s, respectively. 

𝑀𝑒𝑠 , 𝑀𝑠𝑠  and 𝑚𝑡𝑠 are defined in the next section. For each 

product i manufactured during period s, there is a minimum 

and a maximum allowed production time, i.e.  

𝜃𝑠
𝑙𝑜𝐸𝑖𝑠 ≤ 𝑇𝑖𝑠  ≤ 𝑚𝑡𝑢𝑝𝐸𝑖𝑠   ∀𝑖, 𝑠 (3)    

where 𝜃𝑠
𝑙𝑜 represents a user-defined minimum production time 

allowed for product i on period s. 𝐸𝑖𝑠   is a binary variable that 

defines if product i is assigned for production in period s 

(further details are shown in the next section). Constraint (3) 

is enforced to avoid the need to transition over multiple 

products for short production times. Note that the upper bound 

for each product i in period s must be lower than or equal to 

the upper bound of each manufacturing time, mtup. The 



 

 

     

 

following constraint enforces that each MP is performed 

within a specific time range to minimize the occurrence of any 

potential machine breakdowns, i.e. 

𝑚𝑡𝑙𝑜𝑤 ≤ 𝑚𝑝𝑡𝑠 ≤ 𝑚𝑡𝑢𝑝 (4)                

Both mtlow and mtup are specified a priori and can be obtained 

from historical process data or process heuristics, e.g. by 

inspecting the shortest and longest time at which breakdowns 

have occurred for similar units in the past.  

As shown in (5), each PM (𝑚𝑡𝑠) is a function of the MP (𝑚𝑝𝑡𝑠). 
To simplify the analysis, 𝑚𝑡𝑠 is assumed to be linearly 

proportional to 𝑚𝑝𝑡𝑠;  𝑚𝑡0  is a user-defined parameter that 

corresponds to the maximum duration of a PM, i.e., when the 

operation of the unit has reached the maximum available 

manufacturing time (𝑚𝑡𝑢𝑝).  

𝑚𝑡𝑠 = 𝑚𝑡0
𝑚𝑝𝑡𝑠

𝑚𝑡𝑢𝑝
(5)                                    

Further, all planning periods must take place within the H, i.e. 

∑ 𝑃𝑃𝑠𝑠 ≤ 𝐻 (6)                                              

The present model assumes that the machine must be shut 

down and start-up before and after a PM. The machine start-

up time is determined as follows: 

𝑀𝑠𝑠 = 𝑓𝑡 + 𝑇0𝑖𝑠
𝑇𝑟 (7)  

𝑇0𝑖𝑠
𝑇𝑟 = 𝑓(𝑥0, 𝑥(𝑡), 𝑢0, 𝑢(𝑡)) (8)                                          

𝑀𝑠𝑠 represents the start-up time for planning period s. ft is the 

time needed to load the unit to a certain level that is suitable 

for the operation, e.g. in the case of a CSTR, ft represents the 

time needed to fill-in the unit to a certain liquid level and can 

be calculated as a function of the reaction volume and the inlet 

flowrate. 𝑇0𝑖𝑠
𝑇𝑟  is the time needed to complete the transition 

from an initial state 𝑥0 and initial input 𝑢0  to a steady-state 

operating condition, which corresponds to the state of the first 

product that needs to be produced in that period. 𝑇0𝑖𝑠
𝑇𝑟  depends 

on the system’s states x(t) and inputs u(t), e.g. in the case of 

CSTR, 𝑇0𝑖𝑠
𝑇𝑟  is the time needed to transition from an initial 

concentration in the reactant species to the steady-state 

concentration in those same species that correspond to the first 

product produced in that period. More details about 𝑇0𝑖𝑠
𝑇𝑟  are 

given in section 2.3. In the present work, the shut-down time 

(𝑀𝑒𝑠) is assumed equal to ft since it is assumed that the time 

needed to empty the unit is the same required to load the unit 

to an operational level, e.g. in the case of a CSTR, the unit can 

be emptied at the same rate as filled in the start-up process if 

the liquid level remains constant throughout the production of 

the multiple products. 

When PM is executed, the unit is idling; thus, there will be a 

loss of an opportunity to produce products. We consider this 

as a loss of production cost LPC ($/h), i.e.  

𝐿𝑃𝐶 =
∑ ((𝐶𝑠𝑖−𝐶𝑝𝑟𝑖

)𝑟𝑖)𝑖

∑ 𝑟𝑖𝑖
(9)                                             

where 𝐶𝑠𝑖
- 𝐶𝑝𝑟𝑖

is the unit profit ($/mol), which represents the 

unit selling price minus the unit production costs of product i. 

𝑟𝑖  is the production rate of product i. Equation (10) is the 

maintenance cost MC ($). Note that ∑ 𝑚𝑡𝑠𝑠  represents the total 

PM time (h). LC($/h) is the labor cost and 𝐹𝐶𝑃𝑀 ($) is a fixed 

cost for PM; both terms are user-defined. 

𝑀𝐶 = ∑ 𝑚𝑡𝑠𝑠 (𝐿𝑃𝐶 + 𝐿𝐶) + 𝐹𝐶𝑃𝑀 (10)                     

2.2 Scheduling problem 

In each planning period, the first and the last products 

produced during MP are determined using (11) and (12). The 

binary variables 𝐹𝑖𝑠 and 𝐿𝑖𝑠 indicate the first and last product 

to be produced, respectively. Setting 𝐹𝑖𝑠  (𝐿𝑖𝑠 ) to 1 indicates 

that product i is the first (last) product in the period s, and zero 

otherwise.  

∑ 𝐹𝑖𝑠𝑖 =1     ∀ 𝑠 (11)                                                   

∑ 𝐿𝑖𝑠𝑖 =1     ∀ 𝑠 (12)                                                    

Equation (13) ensures that the first product can be considered 

only if it is assigned in period (s).  

𝐹𝑖𝑠 ≤ 𝐸𝑖𝑠     ∀ 𝑖, 𝑠 (13)                                                    

A similar equation is used to present that the last product i can 

be considered only if it is assigned in planning period s, i.e. 

𝐿𝑖𝑠 ≤ 𝐸𝑖𝑠     ∀ 𝑖, 𝑠 (14)                                                    

Multiple products may be produced within each planning 

period, thus requiring the need to transition from product i to 

product j. To model the transition process between two 

products within the same planning period, the binary variable 

𝑍𝑖𝑗𝑠  is introduced to indicate if product j is produced right after 

product i in period s. Equation (15) denotes that a product j 

needs to experience a transition from another assigned product 

i, unless it is the first product to be processed in period s. 

∑ 𝑍𝑖𝑗𝑠𝑖≠𝑗 = 𝐸𝑗𝑠 − 𝐹𝑗𝑠    ∀ 𝑗, 𝑠 (15)                                       

Equation (16) ensures that once a product i is assigned to the 

planning period s, there is a transition from product i to another 

assigned product j, unless product i is the last product. 

∑ 𝑍𝑖𝑗𝑠𝑖≠𝑗 = 𝐸𝑖𝑠 − 𝐿𝑖𝑠    ∀ 𝑖, 𝑠 (16)                                         

Equation (17)-(19) enforces the production sequence. the 

integer variable Ois is an integer variable that denotes the 

production sequence during the planning period s. Ois is also 

used to enforce that each product can only be produced once 

at most in a planning period. M is a sufficiently large (big-M) 

number chosen from preliminary trials. 

𝑂𝑗𝑠 − (𝑂𝑖𝑠+1)≥ -𝑀(1-𝑍𝑖𝑗𝑠)    ∀ 𝑖, 𝑗, 𝑠, 𝑖 ≠ 𝑗 (17) 

𝑂𝑖𝑠 ≤ 𝑀𝐸𝑖𝑠     ∀  𝑖, 𝑠 (18)                                                       

𝐹𝑖𝑠 ≤ 𝑂𝑖𝑠 ≤ ∑ 𝐸𝑖𝑠𝑖   ∀ 𝑖, 𝑠 (19)                                          

2.3 Dynamic optimization and linking constraints 

The generic continuous dynamic model is as follows: 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥(𝑡), 𝑢(𝑡)) (20)                                                      



 

 

     

 

𝑥(𝑡)|𝑡=0 = 𝑥0 (21)                                                              

𝑥𝐿 ≤ 𝑥(𝑡) ≤ 𝑥𝑈, 𝑢𝐿 ≤ 𝑢(𝑡) ≤ 𝑢𝑈 (22)                           

where 𝑥(𝑡) ∈ 𝑅𝑛𝑥  denotes the state variables; 𝑢(𝑡) ∈ 𝑅𝑛𝑢  is 

the manipulated variables; 𝑥𝐿 , 𝑢𝐿  and 𝑥𝑈, 𝑢𝑈  are the 

corresponding bounds on each of these variables. 𝑥0  is the 

initial value of the state variables. Numerical discretization 

techniques are applied to solve (20). In this work, Orthogonal 

Collocation on Finite Elements (OCFE) is used to discretize 

the differential equation (20); thus, the dynamic optimization 

problem is transformed into a nonlinear programming (NLP) 

problem by approximating the control and state profiles, across 

the finite elements, with a family of orthogonal polynomials 

such as Lagrange or Legendre polynomials. The time domain 

is discretized into finite elements(f) with collocation points(c) 

considered within each finite element.  

Based on the above descriptions, the dynamic optimization of 

variables 𝑇0𝑖𝑠
𝑇𝑟  and 𝑇𝑖𝑗𝑠

𝑇𝑟 are defined. The formulations of these 

two variables are similar; for brevity, we only present the 

formulation of 𝑇𝑖𝑗𝑠
𝑇𝑟 . The corresponding discretization of this 

variable in the time domain is as follows: 

𝑡𝑖𝑗𝑠𝑓𝑐
𝑜𝑐𝑓𝑒

= ((𝑓 − 1) + 𝑅𝑡𝑠𝑐)𝑇𝑖𝑗𝑠
𝑇𝑟/𝑁𝑓 (23)                

where 𝑅𝑡𝑠𝑐  is the roots of the orthogonal polynomial used in 

the OCFE, and 𝑁𝑓  is the cardinality of the set of finite elements. 

Continuity of the state variables across adjacent finite elements 

is enforced as per (24). f and c are the indexes of finite elements 

and collocation points, respectively; m and n are the indexes of 

state variables and control inputs, respectively.   

 𝑥𝑚𝑖𝑗𝑠𝑓
𝑜𝑐𝑓𝑒𝑖𝑛𝑖𝑡 = 𝑥𝑚𝑖𝑗𝑠,𝑓−1

𝑜𝑐𝑓𝑒𝑖𝑛𝑖𝑡 + 𝑇𝑖𝑗𝑠
𝑇𝑟ℎ𝑜𝑐𝑓𝑒 ∑ 𝛺𝑐𝑁𝑐

𝑐
𝑐=1 𝑥̇𝑚𝑖𝑗𝑠,𝑓−1,𝑐   

∀ 𝑚, 𝑖, 𝑗, 𝑓 > 1                                                                            (24)                                                                                                                                                      

where ℎ𝑜𝑐𝑓𝑒 is the step of each finite element, i.e.  

ℎ𝑜𝑐𝑓𝑒 =
1

𝑁𝑓
(25)                                                  

Moreover, 𝛺𝑐𝑁𝑐
 is calculated following the Radau IV 

quadrature and 𝑥̇𝑚𝑖𝑗𝑠𝑓𝑐  is the computation of the numerical 

value of the derivative of the mth state, i.e. 

𝑥̇𝑚𝑖𝑗𝑠𝑓𝑐    =𝑓𝑚(𝑥𝑚𝑖𝑗𝑠𝑓𝑐
𝑜𝑐𝑓𝑒

,𝑢𝑛𝑖𝑗𝑠𝑓𝑐
𝑜𝑐𝑓𝑒

, σ)    ∀ 𝑛, 𝑚, 𝑖, 𝑗, 𝑠, 𝑓, 𝑐 (26)       

Equation (27) determines the state variables across the 

discretized time domain, where cp is the index of collocation 

points to show the different points with index c: 

𝑥𝑚𝑖𝑗𝑠𝑓𝑐
𝑜𝑐𝑓𝑒

= 𝑥𝑚𝑖𝑗𝑠𝑓
𝑜𝑐𝑓𝑒𝑖𝑛𝑖𝑡 + 𝑇𝑖𝑗𝑠

𝑇𝑟ℎ𝑜𝑐𝑓𝑒 ∑ 𝛺𝑐𝑝𝑐

𝑐

𝑐𝑝=1

𝑥̇𝑚𝑖𝑗𝑠𝑓𝑐𝑝    

  ∀ 𝑚, 𝑖, 𝑗, 𝑓, 𝑐                                                                            (27) 

To connect the dynamic optimization model to the planning 

and scheduling model, linking variables are required: 

𝑥𝑚𝑖𝑗𝑠
𝑖𝑛 , 𝑢𝑛𝑖𝑗𝑠

𝑖𝑛 , 𝑥𝑚𝑖𝑗𝑠
𝑓𝑖𝑛

, 𝑢𝑛𝑖𝑗𝑠
𝑓𝑖𝑛

. The first two variables are the state 

and manipulated variables at the beginning of the transition 

whereas the last two are similarly for the end of the transition 

in period s. Eq. (28)-(29) show the discretized state variable 

(𝑥𝑚𝑖𝑗𝑠𝑓
𝑜𝑐𝑓𝑒𝑖𝑛𝑖𝑡) and manipulated variable (𝑢𝑛𝑖𝑗𝑠𝑓𝑐

𝑜𝑐𝑓𝑒
) of the first finite 

element and first collocation point is equal to the initial value 

at the beginning of the transition. At the end of the transition, 

the state of the system (𝑥𝑚𝑖𝑗𝑠
𝑓𝑖𝑛

) is equal to the discretized state 

variable 𝑥𝑚𝑖𝑗𝑠𝑁𝑓𝑁𝑐

𝑜𝑐𝑓𝑒
 at the last collocation point (𝑁𝑐) of the last 

finite element (𝑁𝑓), as shown in (30). Equation (31) represents 

the same condition for the discretized manipulated variable. 

𝑥𝑚𝑖𝑗𝑠
𝑖𝑛 = 𝑥𝑚𝑖𝑗𝑠𝑓

𝑜𝑐𝑓𝑒𝑖𝑛𝑖𝑡    ∀ 𝑚, 𝑖, 𝑗, 𝑠, 𝑖 ≠ 𝑗, 𝑓 = 1 (28)               

𝑢𝑛𝑖𝑗𝑠
𝑖𝑛 = 𝑢𝑛𝑖𝑗𝑠𝑓𝑐

𝑜𝑐𝑓𝑒
    ∀ 𝑛, 𝑖, 𝑗, 𝑠, 𝑖 ≠ 𝑗, 𝑓 = 1, 𝑐 = 1 (29)    

𝑥𝑚𝑖𝑗𝑠
𝑓𝑖𝑛

= 𝑥𝑚𝑖𝑗𝑠𝑁𝑓𝑁𝑐

𝑜𝑐𝑓𝑒
     ∀ 𝑚, 𝑖, 𝑗, 𝑠, 𝑖 ≠ 𝑗 (30)                         

𝑢𝑛𝑖𝑗𝑠
𝑓𝑖𝑛

= 𝑢𝑛𝑖𝑗𝑠𝑁𝑓𝑁𝑐

𝑜𝑐𝑓𝑒
    ∀ 𝑛, 𝑖, 𝑗, 𝑠, 𝑖 ≠ 𝑗 (31)                             

Since 𝑥𝑚𝑖𝑗𝑠
𝑖𝑛  and 𝑥𝑚𝑖𝑗𝑠

𝑓𝑖𝑛
 correspond to the initial and final values 

of the transitions between different products, they are also 

related to the steady-state value when the production occurs. 

As shown in (32), the initial value of the mth state variable at 

the beginning of a transition is equal to the steady-state of the 

product i (𝑥𝑚𝑖
𝑠𝑠 ) that was processed before the transition. The 

same condition is stated for the manipulated variable in (33). 

Equation (34) indicates that the transition between two 

products is terminated once the system has reached the next 

steady-state, i.e. the final value of the state variable is equal to 

the steady-state of product j (𝑥𝑚𝑗
𝑠𝑠 ), which is the next product 

in the production sequence. Equation (35) states the same 

condition for the manipulated variable. 

𝑥𝑚𝑖𝑗𝑠
𝑖𝑛 = 𝑥𝑚𝑖

𝑠𝑠 𝑍𝑖𝑗𝑠    ∀ 𝑚, 𝑖, 𝑗, 𝑠, 𝑖 ≠ 𝑗 (32)                                   

𝑢𝑛𝑖𝑗𝑠
𝑖𝑛 = 𝑢𝑛𝑖

𝑠𝑠𝑍𝑖𝑗𝑠   ∀ 𝑛, 𝑖, 𝑗, 𝑠, 𝑖 ≠ 𝑗 (33)                                      

𝑥𝑚𝑖𝑗𝑠
𝑓𝑖𝑛

= 𝑥𝑚𝑗
𝑠𝑠 𝑍𝑖𝑗𝑠      ∀ 𝑚, 𝑖, 𝑗, 𝑠, 𝑖 ≠ 𝑗 (34)                               

𝑢𝑛𝑖𝑗𝑠
𝑓𝑖𝑛

= 𝑢𝑛𝑖
𝑠𝑠𝑍𝑖𝑗𝑠   ∀ 𝑛, 𝑖, 𝑗, 𝑠, 𝑖 ≠ 𝑗 (35)                                     

2.4 Objective function 

The objective function of this iPSC model aims to maximize 

profits. Alternative expressions, e.g. minimization of costs, 

can also be considered. The profits are calculated as the 

difference between revenue (𝑅𝑒𝑣) and total costs(𝑇𝑜𝑐), i.e. 

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑅𝑒𝑣 − 𝑇𝑜𝑐 (36)                               

The total cost represents the addition of the production cost 

(𝑃𝑟), inventory cost (𝐼𝑛𝑣), backorder cost (𝐵𝑎𝑐), raw material 

consumption cost (𝑅𝑐), transition cost (𝑇𝑟𝑐),  and maintenance 

cost (𝑀𝐶), i.e.  

𝑇𝑜𝑐 = 𝑃𝑟 + 𝐼𝑛𝑣 + 𝐵𝑎𝑐 + 𝑅𝑐 + 𝑇𝑟𝑐 + 𝑀𝐶 (37)            

Formulations for Rev, 𝑃𝑟 and 𝑅𝑐  were adopted from a 

previous study (Charitopoulos, Dua and Papageorgiou, 2017).  

Eq. (38)-(40) describe the transition cost Trc, which consists 

of the transition cost at the start-up stage ( 𝑇𝑟0 ), and the 

transition cost from product i to j (𝑇𝑟1). 

𝑇𝑟𝑐 = 𝑇𝑟0 + 𝑇𝑟1 (38)                                                    

𝑇𝑟0 = ∑ ∑ ∑ ∑ ∑ 𝑢𝑛0𝑖𝑠𝑓𝑐
𝑜𝑐𝑓𝑒

𝑇0𝑖𝑠
𝑇𝑟ℎ𝑜𝑐𝑓𝑒𝛺𝑐𝑁𝑐𝑐𝑓𝑠𝑖𝑛 (39)      



 

 

     

 

𝑇𝑟1 = ∑ ∑ ∑ ∑ ∑ ∑ 𝑢𝑛𝑖𝑗𝑠𝑓𝑐
𝑜𝑐𝑓𝑒

𝑇𝑖𝑗𝑠
𝑇𝑟ℎ𝑜𝑐𝑓𝑒𝛺𝑐𝑁𝑐𝑐𝑓𝑠𝑗𝑖𝑛 (40)  

Equation (41) shows the inventory cost, which is calculated as 

the summation of the inventory level (𝐼𝑣𝑖) of every product i, 

multiplied by the unit production price 𝐶𝑖𝑣($/mol). 

𝐼𝑛𝑣 = ∑ 𝐶𝑖𝑣𝐼𝑣𝑖𝑖 (41)                                 

When the demands for every product (𝐷𝑖) cannot be met, a 

backorder penalty cost is allowed, i.e.  

𝐵𝑎𝑐 = ∑ 𝐶𝑏𝑜𝐵𝑜𝑖𝑖 (42)                                     

where𝐶𝑏𝑜 ($/mol) represents the unitary backorder cost and 

𝐵𝑜𝑖  presents the backordered product i at the end of the 

planning horizon. 

The amount (mol) of product i produced within each planning 

period s ( 𝑃𝑟𝑠𝑖𝑠 ), and the products in the entire planning 

horizon (𝑃𝑟𝑖), can be calculated as follows,  

𝑃𝑟𝑠𝑖𝑠 = 𝑟𝑖𝑇𝑖𝑠    ∀ 𝑖, 𝑠 (43)                                            

𝑃𝑟𝑖 = ∑ 𝑃𝑟𝑠𝑖𝑠𝑠 (44)                                                

where 𝑟𝑖 is the parameter to represent the production rate of 

product i. Both the backorders (𝐵𝑜𝑖) and inventory level (𝐼𝑉𝑖)  

are determined at the end of the planning horizon as follows: 

𝐵𝑜𝑖 = (𝐷𝑖 − 𝑃𝑟𝑖  )𝑌𝑡𝑖     ∀  𝑖 (45)                           

𝐼𝑉𝑖 = (𝐷𝑖 − 𝑃𝑟𝑖  )*(𝑌𝑡𝑖-1)     ∀ 𝑖 (46)                          

where the binary variable 𝑌𝑡 is defined as follows: 

  

𝑌𝑡𝑖 = {
1, 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑏𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖
0, 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦  𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖

∀  𝑖 (47)     

We employ the iPSC model considering PM and the flexible 

planning period to solve simultaneous planning, scheduling 

and control problem. Then OCFE is used for the discretization 

of the dynamics of the system for optimal control. Linking 

constraints are applied to connect the planning and scheduling 

model to the dynamic optimization model. Based on the above 

descriptions, the monolithic iPSC MINLP model considered in 

this work is as follows: 

           max. Profit = Rev - Toc 

s.t.       eq. (1)-(19)    Planning and scheduling  

            eq. (20)-(27)   Dynamic transition 

            eq. (28)-(35)   Linking constraints 

3. CASE STUDY 

The performance of the proposed iPSC model with PM and 

flexible planning period presented in the previous section was 

tested using a case study featuring a single multiple-input and 

multiple-output (MIMO) non-isothermal multi-product CSTR 

unit adopted from the literature (Charitopoulos, Dua and 

Papageorgiou, 2017). The reactions are exothermic; thus, a 

cooling jacket is used to maintain the unit’s temperature within 

limits. The dynamic model is shown in (48)−(49). In this work, 

the planning period H is set to 2 weeks.  The inlet 

concentration of the reactant (𝐶𝑎𝑜) is assumed to be constant.  

𝑑(𝑉1𝐶𝑏)

𝑑𝑡
= 𝑉1𝑘𝑟(𝐶𝑎𝑜 − 𝐶𝑏) + 𝐹𝑖𝐶𝑏 (48) 

𝑑(𝑉1𝜌1𝐶𝑝1𝑇1)

𝑑𝑡
= 𝐹1𝜌1𝐶𝑝1𝑇10 −

𝐹1𝜌1𝐶𝑝1𝑇1 + 𝐹𝑐𝜌𝑐𝐶𝑝𝑐(𝑇𝑐0 − 𝑇𝑐)  + 𝑉1𝑘𝑟(𝐶𝑎𝑜 − 𝐶𝑏)𝐻 (49)
                            

The control variables for the system are the liquid flow rate 

(F1) and the coolant flowrate (Fc). The product concentration 

( 𝐶𝑏 ) and the liquid temperature ( 𝑇1 ) are state variables. 

Demands of each product are listed in Table 1. Note that each 

product corresponds to a particular concentration in 𝐶𝑏  (not 

shown for brevity). The steady-state conditions (e.g. 

concentrations) and other parameters used in this MIMO case 

study are provided in (Camacho & Alba, 2013) and (Zhuge 

and Ierapetritou, 2015).  

Table 1.  Demands of products  

Products A B C D 

Demands (mol) 171000 85000 6400 35000 

Products E F G H 

Demands(mol) 40000 45000 22500 600 

For the present study, 𝑚𝑡0 is 5h, mtlow and mtup are 35 and 

60h, respectively; 𝜃𝑠
𝑙𝑜 is set to 0.5h; 𝐹𝐶𝑃𝑀 is set to 800($) and 

the LC is 100($/h).  

The resulting iPSC problem is formulated as an MINLP 

problem and was solved using the DICOPT solver in GAMS. 

CONOPT and CPLEX were used to solve the NLP and mixed 

integer programming (MIP) problems, respectively. The 

dynamic models were discretized using the OCFE method 

with 20 finite elements and each finite element includes 3 

collocation points. In this case study, three test scenarios were 

considered to assess the performance of the proposed iPSC 

model: A) No PM with fixed planning periods, i.e. for S=6, the 

length of each planning period is 56h. B) PM with flexible 

planning periods. C) PM with fixed planning periods (similar 

to those used in Scenario A). For these scenarios, we 

considered three planning periods: 6,7, and 8.  

Table 2.  Results for each scenario (Unit: 106$) 

Scenario 
S=6 S=7 S=8 

Rev Profit Rev Profit Rev Profit 

A 11.349 8.835 11.349 8.835 11.349 8.835 

B 11.138 8.603 11.136 8.601 11.132 8.597 

C 11.134 8.600 11.132 8.597 11.128 8.594 

As shown in Table 2, the revenue and profit for Scenario A are 

the same since we do not consider specific demands for each 

period. The profit for Scenario A is higher than Scenarios B 

and C, i.e., the profit for A is 2.7% and 2.73% higher than B 

and C when S=6. When S=7 (8), the profit for A is 2.72% 

(2.77%) and 2.77% (2.8%) higher than that obtained for B and 

C, respectively. These are expected since Scenario A has more 

time available to manufacture products, resulting in higher 

revenue. However, no PM is considered; thus, it is limited 

since machine breakdown or aging are factors that can impact 

operation. The economic performance between Scenarios B 

and C are also compared as a function of planning periods. The 

profits using a flexible planning period are higher than that 

using fixed periods. As shown in Table 2, the profits tend to 

decrease as the number of planning periods increases, which is 



 

 

     

 

also an indication that the selection of planning periods is not 

trivial and can significantly improve profits if the operation is 

performed using optimization. 

Table 3 summarizes the results for Scenarios B and C (S= 6). 

Since we considered the length of MP and PM as decision 

variables in Scenario B, and kept them as constant parameters 

in Scenario C, the number of constraints and continuous 

variables for each scenario are slightly different. The CPU 

time of Scenario B is 4% lower than that obtained from 

Scenario C, which suggests that the complexity of both models 

is somewhat similar. The calculations were performed using a 

computer of 1.80 GHz/8GB RAM. We selected the second and 

third planning periods as the examples to analyse the 

differences in performance between Scenarios B and C. As 

shown in Table 3, Scenario B only produces one product in the 

second planning period (P2) whereas Scenario C produces 

three products. The lengths in PM and MP are 25.41% and 

30.08% shorter in Scenario B than in Scenario C. Moreover, 

both scenarios produce three different products during the 

third planning period (P3). The lengths in PM and MP are 

16.06% and 16.07% longer in Scenario B than in Scenario C. 

Results from these scenarios show that selecting the planning 

periods' length is not trivial and lead to profitable planning, 

scheduling, and control strategies, as shown in Table 2.  

Table 3. Results: Scenarios B and C (S=6) 

 B C 

Constraints 126,694 126,681 

Continues variables 161,997 161,991 

Discrete variables 542 542 

CPU time (s) 276.95 289.03 

Optimal schedule 
P2: F 

P3: C → A →D 

P2: E → A →B 

P3: G → H →F 

Transition time(s) 
P2: 0 

P3: 0.024, 0.051 

P2: 0.032, 0.013 

P3: 0.077, 0.031 

Length of PM(h) 3.012, 5 4.038, 4.038 

Length of planning 
period(h) 

39.157, 65 56, 56 

Fig. 2 shows the dynamic transition processes from products 

C to A during the third planning period in scenario B. As 

shown in this figure, a smooth transition from a high 𝐶𝑏 

(product C) to a low 𝐶𝑏  (product A) is performed by 

simultaneously adjusting the outlet flowrates F1 and Fc.  

 

Fig. 2. Dynamic transition from product C to product A 

4. CONCLUSIONS 

An iPSC model that considers flexible PM and MP was 

presented in this study. The proposed formulation takes the 

form of an MINLP problem. This novel iPSC model was 

formulated by considering the length of MP and PM in each 

planning period as decision variables, which may result in 

higher profits and attractive manufacturing strategies. Results 

indicate that the flexible planning period with time-based PM 

has clear benefits to improve profits compared to the fixed 

planning period with PM. The results also show that the 

number of planning periods impact the profits (for a fixed 

planning horizon). Future work will focus on extending the 

model from single unit to multiple units and explore 

uncertainties on different layers of the process. In this work, 

we used a simplified time-based PM; a condition-based 

predictive maintenance will be explored in the future. Also, 

alternative methods that take into account plant aging will be 

considered as part of the future work. 
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