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Abstract: The fluidized bed theory can be complex, especially for heterogeneous flow de-
scriptions with bypasses, generally resulting in large differential and algebraic systems of
equations. Consequently, their applicability to model-based process control is limited. In this
work, a simplified homogeneous model for pharmaceutical batch drying is derived from the
two-phase fluidization theory using physical insights and simplifying assumptions, reducing
more than a hundred equations to five. A nonlinear model predictive controller with an
internal model structure is designed from these simple equations, showing the simplicity of
tuning and implementation. Parameters of the model are calibrated through nonlinear grey-
box identification using pilot scale experimental data. The validation demonstrates that the
proposed simplifications do not impair the ability to replicate the process dynamics adequately
with experimental conditions similar to the ones used for calibration. Closed-loop results in
simulation attest the robustness of this control strategy.
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1. INTRODUCTION

The intense particle mixing and heat diffusivity of fluidized
beds explains their popularity for pharmaceutical product
drying. However, the gas flow through fluidized solids
follows heterogeneous patterns with bypasses, generally
perceptible as gas bubbles (Yang, 2003). Consequently,
theories describing fluidized bed gas behavior are complex,
leading to mathematical models hardly applicable for ac-
tual industrial developments (Philippsen et al., 2015). This
is the case for process control design and implementation
because computational burdens and tuning complexity
hinder real-time applications (e.g. Gagnon et al., 2017).
Simplifying the fluidized bed dryer (FBD) dynamic model
is thus desirable, at the very least for control purposes.

Burgschweiger et al. (1999) and Gagnon et al. (2020)
introduce two-phase batch FBD models to describe gas
flow patterns. Although more realistic than single-phase
descriptions (Dry and Judd, 1985), they generally lead to
large differential and algebraic equation systems requiring
complex solving workflow.

A homogeneous single-phase dryer with nonuniform dis-
tributions for internal moisture in particles is described
in Martinez-Vera et al. (1995). Distributed models cannot
be applied in a straightforward manner to process control.
Alternatively, the van Meel normalization (van Meel, 1958)
or the characteristic drying curves concepts (Mujumdar,
2014) enable a lumped description of sorption and inter-
nal diffusion kinetics, like the single-phase model of Gavi
(2019). Separate experimentation is however required to
determine the curve function, the critical, and the equi-

librium moisture content. Furthermore, theses parameters
depend on inlet conditions and experimental equipment
(Mujumdar, 2014). A homogeneous representation is de-
scribed in Syahrul et al. (2003), but simulations need
outlet gas data as inputs. It must also be emphasized that
an accurate sorption model is less crucial for applications
dominated by the constant rate period (or first drying
stage), which is common for pharmaceutical product.

Other approaches include purely empirical or black-box
models. However, incorporating the inlet gas condition
effect in these strategies is difficult and ambiguous since
impacts on empirical parameter values are not well-defined
(Mujumdar, 2014). This feature is essential for process
control applications since the gas feed rate and temper-
ature are the main manipulated inputs during drying.
Linear model identification and control are also not triv-
ial since batch processes like FBDs cannot be linearized
around an operating point and exhibit irreversible reac-
tions (Nagy and Braatz, 2003). These features explain why
their dynamics are generally classified as highly nonlinear
and less suitable for classical control.

This paper presents a simple predictive controller for batch
FBDs based on a single-phase model. To this end, the two-
phase equations of Gagnon et al. (2020) are reduced us-
ing simplifying assumptions and physical approximations.
They are then used for nonlinear model predictive con-
trol (NMPC) based on an internal model scheme, leading
to an algorithm relatively easy to implement and tune.
The model parameters are calibrated with a nonlinear
grey-box identification algorithm on pharmaceutical pilot
scale data. The validation compares simulations with the



complete two-phase description on separate dataset. Im-
plementing the control strategy on a simulated two-phase
FBD attests closed-loop performance and robustness.

2. MATERIALS AND METHODS

The single-phase model is first derived from the compre-
hensive model of Gagnon et al. (2020) using approximate
assumptions and conservation laws. Refer to this paper
for information on equipment and measurements, since the
data presented here are the same. The control algorithm
is briefly described afterward. The objective is to reach a
particle moisture content setpoint at the end of the batch
while keeping a maximum product temperature constraint.

2.1 Model Assumptions

Gagnon et al. (2020) is based on the two-phase theory (Ku-
nii and Levenspiel, 1991). It involves more than a hundred
equations. The assumptions introduced hereafter are used
to simplify the model. It is acknowledged that some of
them have a questionable validity. However, control appli-
cations only require general trends since the feedback loop
can handle modeling errors to some extent. The neglected
phenomena can also impact parameter values during grey-
box identification.

• The fluidized bed is seen as a perfectly homogeneous
mix of interstitial gas and particles, called the emul-
sion, with constant void fraction and batch size. There
are no bubbles, gas bypasses and heat losses in the
bed (adiabatic process).
• Variations of physical properties of components with

temperature, pressure and moisture are neglected.
• Steady-state is assumed for mass and heat transfers

on gaseous control volumes.
• The vapor sensible heat is considered negligible com-

pared to the latent heat.
• Particle size distribution is neglected, the particles are

small, and their volume is invariant during drying.
They all have the same physical properties, moisture
content, and temperature at a given time during the
drying and there is no interaction between them.
• The solid material is supposed non-hygroscopic. The

drying kinetics are divided into two distinct stages.
The constant rate period assumes vapor-saturated
stagnant films around the particles. The particle in-
ternal moisture vaporizes during the following falling
rate period. A simplified version of characteristic dry-
ing curves is used, needing no separate experiments.
• The inlet air moisture content is constant and its

influence in the total airflow rate is neglected. First
order dynamics and direct transmission are assumed
for the closed-loop responses of the inlet temperature
and airflow, respectively.

In this work, fluctuations in inlet air moisture are not taken
into account during modeling and handled by the feedback.

2.2 Mass Balance

From Gagnon et al. (2020) two-phase model, the particle
mass balance equation at time t is:

ρpd
dχp

dt
= − 6

φdp
kpf,eρg (χpf − χe) (1)

with χp, χpf and χe being the dry basis moisture content
of the particles, the stagnant gas film around them, and
the interstitial gas, respectively. Particles have a size dp,
sphericity φ and dry skeletal density ρpd. kpf,e is the mass
transfer coefficient with the interstitial gas, and ρg, the air
density. The steady-state mass balance of the interstitial
gas is:

υmf

zf
(χe −χ0) =

6(1− εf)
φdp

kpf,e(χpf −χe)− δKe,b(χe − χ̃b)

(2)
with χ0 and χ̃b as the inlet gas moisture content and
the bubble phase space-average value, respectively. The
dry air velocity and the void fraction of the interstitial
gas are supposed fixed at the minimum fluidization values
υmf and εmf . The fluidized bed height zf and total void
fraction εf depend on the bubble phase volume fraction
δ. A single-phase or homogeneous model is obtained from
(2) by setting the bubble fraction at δ = 0. Also, the dry
velocity of the interstitial gas is no longer fixed at υmf , but
rather follows the inlet value υ0. Hence, the interstitial gas
mass balance in a single-phase form is:

υ0
zf

(χe − χ0) =
6(1− εf)
φdp

kpf,e(χpf − χe) (3)

On dryers typically, χ0 is low enough to simplify with
υ0 = V̇0/[Sf(1 + χ0)] ≈ V̇0/Sf , giving:

V̇0
Sfzf

(χe − χ0) =
6(1− εf)
φdp

kpf,e(χpf − χe) (4)

with V̇0, the inlet volumetric flow rate, and Sf , the fluidized
bed cross-sectional area.

By introducing the coefficient a2 defined as:

a2 =
6kpf,eρg
φdpρpd

(5)

equation (1) becomes:

dχp

dt
= a2 (χe − χpf) (6)

For moderate airflow variations, zf and εf can be supposed
constants (fixed batch size with a constant fluidized bed
expansion). By introducing a3 and a4 defined as:

a3 =
1

Sfzf
and a4 =

6(1− εf)kpf,e
φdp

(7)

equation (4) transforms into:

χe =
a3V̇0

a3V̇0 + a4
χ0 +

a4

a3V̇0 + a4
χpf (8)

Inserting (8) into (6) and simplifying give:

dχp

dt
=

a2a3V̇0

a3V̇0 + a4
(χ0 − χpf) (9)

When particles are small (dp < 100 µm), the coefficient

a4 is at least three orders of magnitude larger than a3V̇0.
This observation enables the simplification 1/(a3V̇0+a4) ≈
1/a4, giving:

dχp

dt
=
a2a3V̇0
a4

(χ0 − χpf) (10)

Introducing the gas-particle mass transfer ratio per unit
volume of fluidized bed a1:

a1 =
a2a3
a4

=
ρg

ρpdSfzf(1− εf)
(11)



Fig. 1. Possible falling rate correction curves

the mass balance becomes:
dχp

dt
= a1V̇0(χ0 − χpf) (12)

The moisture content of the particle gas film χpf can be
estimated with:

χpf = γ(Tp)ψ(χp) (13)

Assuming non-hygroscopic particles, γ(Tp) is related to
the saturation mixing ratio χsat. Since the temperature
range is relatively narrow, it can be estimated with an
exponential relation:

γ(Tp) = α exp (βTp) (14)

with shape modification parameters α and β. The film is
no longer saturated in the falling rate period as moisture
needs to diffuse from the particle internal pores to surface
to vaporize. Similarly to the characteristic drying curve
concept (Mujumdar, 2014), an empirical correction func-
tion is used here. By normalizing with the critical moisture
content χpc only (neglecting the equilibrium value here),
a simple correction function is:

ψ(χp) =

{
1

χp

χpc
≥ 1(

χp

χpc

)ν
χp

χpc
< 1

(15)

with the exponent ν controlling the curvature induced by
the particle sorption characteristic, as depicted in Fig. 1.
The final form of the simplified mass balance is therefore:

dχp

dt
= a1V̇0

[
χ0 − γ(Tp)ψ(χp)

]
(16)

2.3 Energy Balance

From Gagnon et al. (2020), the energy balance of the
particles at temperature Tp is:

ρpd(cs + χpcw)
dTp
dt

=
6

φdp

{
he,pf(Te − Tp)− kpf,eρg

× (χpf − χe)[Λwv + (cwv − cw)(Tp − Twv)]

}
(17)

where he,pf is the heat transfer coefficient from the inter-
stitial gas, and cs, cw and cwv, the specific heat capacities
of the solid material, water and vapor respectively. By
neglecting the water contribution in the particle enthalpy
and the vapor sensible heat cwv∆T relative to the vapor-
ization latent heat Λwv, i.e. setting cw = cwv = 0 here,
equation (17) becomes:

dTp
dt

=
6he,pf

φdpρpdcs
(Te−Tp)− 6kpf,eρg

φdpρpdcs
(χpf −χe)Λwv (18)

Defining a5 and a6 as:

a5 =
6he,pf

φdpρpdcs
and a6 =

6kpf,eρgΛwv

φdpρpdcs
(19)

the energy balance can be rewritten as:
dTp
dt

= a5(Te − Tp) + a6(χe − χpf) (20)

The interstitial gas steady-state energy balance is :

υmf

zf
(cg + χ0cwv)(Te − T0) =

δHb,e

ρg
(T̃b − Te)

+
6(1− εf)
φdp

{
kpf,e(χpf − χe)cwv +

he,pf

ρg

}
(Tp − Te)

− 4he,v

dvρg
(Te − Tv) (21)

By transforming the equation into a single-phase model
(δ = 0 and υmf = υ0), neglecting heat loss through
the vessel with he,v = 0, replacing the dry air velocity

with υ0 ≈ V̇0/Sf , and neglecting the vapor sensible heat
(cwv = 0), the energy balance simplifies to:

V̇0
zfSf

cg(Te − T0) =
6(1− εf)
φdp

he,pf

ρg
(Tp − Te) (22)

Introducing a7 and a8 as:

a7 =
cg
zfSf

and a8 =
6(1− εf)he,pf

φdpρg
(23)

and rearranging (22) leads to:

Te =
a7V̇0

a7V̇0 + a8
T0 +

a8

a7V̇0 + a8
Tp (24)

Inserting (24) and (8) into the particle energy balance of
(20) yields to:

dTp
dt

=
a5a7V̇0

a7V̇0 + a8
(T0 − Tp) +

a6a3V̇0

a3V̇0 + a4
(χ0 − χpf) (25)

For small particles, the equation can be further simplified
with 1/(a3V̇0 + a4) ≈ 1/a4 and 1/(a7V̇0 + a8) ≈ 1/a8 like
the mass balance, giving:

dTp
dt

=
a5a7V̇0
a8

(T0 − Tp) +
a6a3V̇0
a4

(χ0 − χpf) (26)

By introducing b1 and b2 coefficients as:

b1 =
a6a3
a4

=
ρgΛwv

ρpdSfzf(1− εf)cs
(27)

b2 =
a5a7
a8

=
ρgcg

ρpdSfzf(1− εf)cs
(28)

and substituting χpf with (13), the energy balance simpli-
fies to its final form:

dTp
dt

= b1V̇0

[
χ0 − γ(Tp)ψ(χp)

]
+ b2V̇0

[
T0 − Tp

]
(29)

Empirical coefficients b1 and b2 represent the gas-particle
energy transfer ratios per unit volume of fluidized bed.

2.4 Inlet Heater and Blower

The dryer inlet airflow and temperature are normally
controlled. Relative to drying dynamics, the closed-loop
performance of the airflow loop is typically fast enough to
assume a direct transmission between the setpoint V̇sp and

process value V̇0:
V̇0 ≈ V̇sp (30)

The transient response between the inlet temperature
setpoint Tsp and process value T0 is supposed to exhibit
first order dynamics with unity gain:

dT0
dt

= (1/τ)
[
Tsp − T0

]
(31)



NMPC FBD

eq. (37)

r(k) u(k) y(k)

+ym(k)

−
x(k)

ys(k)

Fig. 2. Nonlinear predictive control with internal model

with τ representing the heater closed-loop time constant.

2.5 State-Space Representation

Combining (14)–(16) and (29)–(31), the model is:

dT0
dt

= (1/τ)
[
Tsp − T0

]
(32)

dχp

dt
= a1V̇sp

[
χ0 − γ(Tp)ψ(χp)

]
(33)

dTp
dt

= b1V̇sp

[
χ0 − γ(Tp)ψ(χp)

]
+ b2V̇sp

[
T0 − Tp

]
(34)

with

γ(Tp) = α exp (βTp) (35)

ψ(χp) =

{
1

χp

χpc
≥ 1(

χp

χpc

)ν
χp

χpc
< 1

(36)

where T0, Tp and Tsp are in °C, χp in dry basis, and V̇sp
in m3 h−1. The inlet air moisture content χ0 is supposed
constant here. Solving (32)–(36) by a fourth order Runge-
Kutta (RK4) method with a 30 s sampling time, the state-
space representation at discrete time k is:

x(k + 1) = f
(
x(k),u(k)

)
(37a)

ym(k) = x(k) (37b)

with ym and f(x,u) as the model output and state update
function. The model state x and input u are defined as:

x(k) = [T0(k) χp(k) Tp(k)]
ᵀ

(38)

u(k) =
[
V̇sp(k) Tsp(k)

]ᵀ
(39)

2.6 Control algorithm

Model performances for control are demonstrated with an
NMPC scheme based on an internal model structure, as
illustrated in Fig. 2. Desbiens et al. (2000) desribe a similar
design, but for the linear case. At each control period k,
the following optimization problem is solved:

min
∆U

[(
R̂− Ŷ

)ᵀ
MHP

(
R̂− Ŷ

)
+
(
∆U

)ᵀ
NHC

(
∆U

)]
(40)

with the input increments over the control horizon HC:

∆U =


∆u(k + 0)
∆u(k + 1)

...
∆u(k +HC − 1)

 (41)

in which ∆u(k + j) = u(k + j) − u(k + j − 1) for j = 0
to HC − 1. The predictions of the setpoint r(k) and plant
output y(k) over the horizon HP are:

R̂ =


r̂(k + 1)
r̂(k + 2)

...
r̂(k +HP)

 and Ŷ =


ŷ(k + 1)
ŷ(k + 2)

...
ŷ(k +HP)

 (42)

Table 1. Simplified model parameters for batch
fluidized bed drying

parameter value
standard
deviation units

χ0 0.15× 10−2 – –
a1 9.26× 10−5 0.04× 10−5 m−3

b1 4.54× 10−2 0.05× 10−2 °Cm−3

b2 2.56× 10−5 0.02× 10−5 m−3

ν 3.48 0.12 –
χpc 2.33× 10−2 0.06× 10−2 –
α 4.90× 10−3 – –
β 5.70× 10−2 – °C−1

τ 86.7 – s

where r̂(k+ j) = r(k) and ŷ(k+ j) = ŷd(k+ j)+ ŷs(k+ j)
for j = 1 to HP. The weighting matrices MHP and NHC

are:

MHP = diag{M,M, . . . ,M} (43)

NHC
= diag{N,N, . . . ,N} (44)

with M and N as the setpoint tracking and input incre-
ment weights.

The HP deterministic predictions ŷd(k+ j) are generated
at time k by recursively calculating (37) from its current
state x(k). The HP stochastic predictions ŷs(k + j) are
obtained by forecasting the estimation of the current
disturbance ys(k) = y(k) − ym(k) = y(k) − x(k) over
the future horizon. To do so, it is assumed that the
disturbance is the result of filtering a zero mean white
noise by a stochastic linear model Gs. To ensure offset-free
control, Gs must contain an integrator for each controlled
output. Additional poles and zeros modify the disturbance
rejection dynamics as needed (Desbiens et al., 2000).

Problem (40) is solved with sequential quadratic program-
ming (SQP) and constrained with:

∆umin ≤ ∆u(k + j) ≤ ∆umax j = 0, . . . ,HC − 1 (45)

umin ≤ u(k + j) ≤ umax j = 0, . . . ,HC − 1 (46)

ŷmin ≤ ŷ(k + j) ≤ ŷmax j = 1, . . . ,HP (47)

3. RESULTS AND DISCUSSION

3.1 Model Calibration and Validation

The parameters of the simplified model require calibra-
tion. The heater closed-loop time constant τ is already
estimated for this equipment in Gagnon et al. (2020). A
relative humidity measurement gives the inlet moisture
content χ0. The exponential function γ of (14) is related
to the saturation mixing ratio χsat. α and β parameters
are therefore calibrated with exponential regression on
data generated from physical considerations, using Dal-
ton’s Law for χsat, and Tetens equation, for water vapor
pressure. A regression from 20 to 60 °C, corresponding to
typical Tp values, gives an excellent fit with a root mean
square error (RMSE) on χsat smaller than 0.05 %. Table 1
gives χ0, τ , α and β calibrated values.

The grey-box identification estimates the remaining pa-
rameters: a1, b1, b2, ν and χpc. The algorithm is a non-
linear least squares optimization problem minimizing the
distance between simulated outputs and data, using pa-
rameters as decision variables. The model outputs in y



Fig. 3. Simplified 1-phase and complete 2-phase model
comparison for batch B3

are weighted with w in the least squares optimization
algorithm:

w = [0 1.0 0.004]
ᵀ

(48)

by using the high limit of the measurement range and
excluding T0 from calibration (already calibrated with
τ). Four independent datasets are produced: B1 and B2
for calibration, and B3 and B4 for validation. The grey-
box calibration is performed on B1 and B2 data, with a
respective dry batch size of 3.91 kg and 3.78 kg (multiple
experiment identification). Table 1 gives the identified
parameters and their estimated standard deviation (high-
lighted in blue). The RMSE between model and calibration
data are provided in Table 2, under 1-phase columns.
The small RMSEs and standard deviations compared to
estimated parameters, indicate a high confidence in the
model with B1 and B2 data. Table 2 also include results
with the complete two-phase description.

The model is cross-validated on B3 data, with experi-
mental conditions similar to calibration (dry batch size of
3.98 kg). As shown by Fig. 3 and Table 2, B3 results sug-
gest that predictive performances of the simplified single-
phase model are better than the two-phase description.
The simplifying assumptions however decrease extrapo-
lation capabilities. In this regards, Fig. 4 and Table 2
compare both models with B4 data in which the batch size
is 4.71 kg, thus significantly different from that used during
calibration experiments. These results show that the sim-
plified model displays sensitivity to variations in operating
conditions for both outputs. Their two-phase counterparts
do not exhibit the same limitation in robustness.

Table 2. Model adjustments for simplified 1-
phase and complete 2-phase models

RMSE

χp (%) Tp (°C)

batch usage 1-phase 2-phase 1-phase 2-phase

B1 calib. 0.5109 1.3095 2.5872 2.6176
B2 calib. 0.3780 1.2149 1.0154 3.2896

B3 valid. 0.4831 1.5435 1.8955 3.8632
B4 valid. 3.2358 1.3264 7.7996 2.6360

Fig. 4. Simplified 1-phase and complete 2-phase model
comparison for batch B4

Model extrapolation capabilities are obviously affected by
the fixed batch size hypothesis, but also by neglecting bub-
bles, since a single-phase is generally less representative of
FBD operations (Dry and Judd, 1985). Note that batch
size variations are generally not significant in production
conditions. Colored areas around simulated outputs of
Figs. 3 and 4 depict the estimated 95% confidence interval
(CI), assuming a Gaussian distribution. These results show
that the confidence in Tp is lower than χp, presumably
attributed to the adiabatic process hypothesis. Intervals
are also wider in B4 than B3, confirming the lower model
performance for B4 data. Notwithstanding limitations, the
following results show that it can still be used for control
applications as FBD general trends are conserved.

3.2 Predictive Control

The NMPC strategy described in Section 2 is applied on
the complete two-phase FBD model with additive mea-
surement noises. It is worth mentioning that the mis-
matches in the controller model (1-phase) and process
model (2-phase), visible in Figs. 3 and 4, show the robust-
ness of the proposed scheme. Knowing that the goals are
to reach 1 % moisture content while maintaining particle
temperature below 45 °C, the control parameters are:

• control period : 30 s
• HP = HC = 30
• r(k) = [ 0 0.01 0 ]ᵀ

• M = diag{0, 1, 0} and N = 10−3 diag{1, 0.4}
• ∆umin = [−25 −10 ]ᵀ and ∆umax = [ 25 10 ]ᵀ

• umin = [ 75 40 ]ᵀ and umax = [ 200 90 ]ᵀ

• ŷmin = [−∞ −∞ −∞ ]ᵀ and ŷmax = [∞ ∞ 45 ]ᵀ

Note that the selected M implies that only the moisture
content is requested to follow a setpoint. Large HP and
HC values are required to cover the whole batch and allow
full flexibility on manipulated variables. Input constraints
ensure appropriate product fluidization and inlet temper-
atures. The stochastic model is:

Gs(q
−1) =

(1− 0.65q−1)2

1− q−1

 1
1−0.3q−1 0 0

0 1
1−0.95q−1 0

0 0 1
1−0.3q−1





Fig. 5. Simplified predictive control results on simulator

where q−1 is the backshift operator.

Fig. 5 shows that the suggested control algorithm is
able to to reach the moisture setpoint and avoid particle
overheating by using the imperfect single-phase model for
predictions. To do so, the inlet temperature setpoint Tsp
is decreased at the end of the batch while the airflow
V̇sp is kept at its maximum, since its impact on the
falling rate period is low. The simple predicitve model, the
single optimization routine of the NMPC and the absence
of a nonlinear observer make the implementation and
tuning easier than in Gagnon et al. (2017). The simpler
formulation also allows a control period twice shorter.

At t = 7 min, the Tsp increase is caused by modeling
errors, particularly the fastest drying time of the simplified
model, as depicted in Figs. 3 and 4. Through feedback,
the NMPC compensates for model mismatches, ensuring
adequate drying at the end of the batch. The only cost
is a marginally suboptimal cycle time, since a strategy
based on the two-phase equations would decrease the
temperature slightly later in the batch.

4. CONCLUSION

This work derives a single-phase batch fluidized bed dryer
model for nonlinear model predictive control. The sim-
plifying assumptions introduced allow representing the
dynamics with five equations. Process parameters are cal-
ibrated with grey-box identification from pilot scale ex-
perimental data. The predictive control algorithm uses an
internal model structure with linear stochastic predictions.
Validation and control results with the complete two-phase
description indicate that the proposed simplifications do
not impair the ability to adequately replicate the process
dynamics, and is thus suitable to design predictive con-
trol laws. The higher level of empiricism however reduces
model extrapolation capabilities. Nevertheless, the closed-
loop performances display robustness to modeling errors.

Future works will tackle the issue of fluctuating inlet
air moisture content with feedforward control, and study
alternative approaches such as sliding mode control, to
further ease the implementation. Other applications also
include moisture soft sensing based on state observers.
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